KMN-159 is the lead compound from a series of novel difluorolactam prostanoid EP receptor agonists aimed at inducing local bone formation while avoiding the inherent side effects of systemic EP activation. KMN-159 is a potent, selective small molecule possessing pharmacokinetic properties amenable to local administration. Unfractionated rat bone marrow cells (BMCs) were treated once at plating with escalating doses of KMN-159 (1 pM to 10 μM).
View Article and Find Full Text PDFA series of small-molecule full agonists of the prostaglandin E type 4 (EP) receptor have been generated and evaluated for binding affinity and cellular potency. KMN-80 and its gem-difluoro analog KMN-159 possess high selectivity relative to other prostanoid receptors. Difluoro substitution is positioned alpha to the lactam ring carbonyl and results in KMN-159's fivefold increase in potency versus KMN-80.
View Article and Find Full Text PDFInitial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg).
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
January 2012
Connective tissue growth factor (CTGF) is a 38 kDa, cysteine rich, extracellular matrix protein composed of 4 domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells, which was dramatically increased during skeletal repair or regeneration.
View Article and Find Full Text PDFWe previously identified osteoactivin (OA) as a novel secreted osteogenic factor with high expression in developing long bones and calvaria, and that stimulates osteoblast differentiation and matrix mineralization in vitro. In this study, we report on OA mRNA and protein expression in intact long bone and growth plate, and in fracture calluses collected at several time points up to 21 days post-fracture (PF). OA mRNA and protein were highly expressed in osteoblasts localized in the metaphysis of intact tibia, and in hypertrophic chondrocytes localized in growth plate, findings assessed by in situ hybridization and immunohistochemistry, respectively.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
April 2011
Osteoactivin (OA) protein was discovered in bone cells a decade ago. Recent literature suggests that osteoactivin is crucial for the differentiation and functioning of different cell types, including bone-forming osteoblasts and bone-resorbing osteoclast cells. Here, we review the literature to date on various regulatory functions of osteoactivin, as well as its discovery, structure, expression, and function in different tissues and cells.
View Article and Find Full Text PDFSulfonamides, exemplified by 3a, were identified as highly selective EP(2) agonists. Lead optimization led to the identification of CP-533536, 7f, a potent and selective EP(2) agonist. CP-533536 demonstrated the ability to heal fractures when administered locally as a single dose in rat models of fracture healing.
View Article and Find Full Text PDFOsteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction.
View Article and Find Full Text PDFOsteoblasts are the cells responsible for formation of new bone throughout life. Rats are one of the most widely studied mammalian species in skeletal biology and serve as useful models for many aspects of human skeletal physiology. The availability of genetically modified mice as research tools has greatly enabled our understanding of how specific genes contribute to the process of skeletogenesis.
View Article and Find Full Text PDFBackground: In our previous studies, we found that osteoactivin (OA) plays an important role in the regulation of osteoblast differentiation in vitro. Our studies also suggested that the region of OA protein that contains an RGD motif might play a vital role in the function of OA in osteoblast differentiation. In this study, we examined the functional role of OA-derived peptide containing the RGD motif (OA-D) in osteoblast differentiation.
View Article and Find Full Text PDFBone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2-/- mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture.
View Article and Find Full Text PDFMesenchymal cell (MC) condensation or the aggregation of MCs precedes chondrocyte differentiation and is required for subsequent cartilage formation during endochondral ossification. In this study, we used micromass cultures of C3H10T1/2 cells as an in vitro model system for studying MC condensation and the events important for this process. Transforming growth factor beta1 (TGF-beta1) served as the initiator of MC condensation in our model system and we were interested in determining whether CTGF functions as a downstream mediator of TGF-beta1.
View Article and Find Full Text PDFOur laboratory previously showed that osteoactivin (OA) is a novel, osteoblast-related glycoprotein that plays a role in osteoblast differentiation and function. The purpose of this study was to examine the regulation of OA expression by BMP-2 and the role OA plays as a downstream mediator of BMP-2 effects in osteoblast function. Using primary osteoblast cultures, we tested different doses of BMP-2 on the regulation of OA expression during osteoblast development.
View Article and Find Full Text PDFUnlabelled: CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia.
Introduction: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia.
Heptanoic acid lactams, exemplified by 2, were identified as highly selective EP4 agonists via high throughput screening. Lead optimization led to the identification of lactams with a 30-fold increase in EP4 potency in vitro. Compounds demonstrated robust bone anabolic effects when administered in vivo in rat models of osteoporosis.
View Article and Find Full Text PDFA series of ligands with varying heterocyclic cores and substituents that display a range of selectivity's (up to >100x) for ER-beta over ER-alpha are reported.
View Article and Find Full Text PDFTwo series of 6-hydroxy and 7-hydroxy tetrahydroisoquinolines were prepared. Evaluating a range of C-1, C-4, and N-substituents led to the discovery of ER alpha and ER beta selective analogs.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
July 2004
Osteoactivin (OA) is a novel protein identified by mRNA differential display using bone from osteopetrotic versus normal rats. Bioinformatic analysis showed that OA cDNA has an open reading frame of 1716 bp encoding a protein of 572 aa, the first 21 aa constitute a signal peptide. OA sequence analysis also demonstrated 13 putative N-glycosylation sites suggestive of a heavily glycosylated protein.
View Article and Find Full Text PDFUnlabelled: CP-533,536, a newly discovered, non-prostanoid EP2 receptor-selective PGE2 agonist, stimulates local bone formation and enhances fracture healing in rat models.
Introduction: There is a significant medical need for agents that can stimulate local bone formation and enhance fracture healing. We tested the effects of CP-533,536, a newly discovered, non-prostanoid EP2 receptor-selective prostaglandin E2 (PGE2) agonist, in stimulating local bone formation and enhancing fracture healing in rat models.
Connective tissue growth factor (CTGF) is a secreted, extracellular matrix-associated signaling protein that regulates diverse cellular functions. In vivo, CTGF is expressed in many tissues with highest levels in the kidney and brain. The purpose of this study was twofold; first, to localize CTGF in normal bone in vivo during growth and repair, and second, to examine CTGF expression and function in primary osteoblast cultures in vitro and test its effect on bone formation in vivo.
View Article and Find Full Text PDF