The Janus kinases (JAKs) and their downstream effectors, signal transducer and activator of transcription proteins (STATs), form a critical immune cell signaling circuit, which is of fundamental importance in innate immunity, inflammation, and hematopoiesis, and dysregulation is frequently observed in immune disease and cancer. The high degree of structural conservation of the JAK ATP binding pockets has posed a considerable challenge to medicinal chemists seeking to develop highly selective inhibitors as pharmacological probes and as clinical drugs. Here we report the discovery and optimization of 2,4-substituted pyrimidines as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3.
View Article and Find Full Text PDF