Publications by authors named "Thomas A Lograsso"

Low-temperature variable-energy electron irradiation was used to induce non-magnetic disorder in a single crystal of a hole-doped iron-based superconductor, Ba1-xKxFe2As2, = 0.80. To avoid systematic errors, the beam energy was adjusted non-consequently for five values between 1.

View Article and Find Full Text PDF

We present a new measurement method which can be used to image the gap nodal structure of superconductors whose pairing symmetry is under debate. This technique utilizes a high quality factor microwave resonance involving the sample of interest. While supporting a circularly symmetric standing wave current pattern, the sample is perturbed by a scanned laser beam, creating a photoresponse that was previously shown to reveal the superconducting gap anisotropy.

View Article and Find Full Text PDF

We show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects.

View Article and Find Full Text PDF

Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12).

View Article and Find Full Text PDF

The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba K )FeAs has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping ( ≈ 0.4) to becoming nodal at > 0.

View Article and Find Full Text PDF

We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy.

View Article and Find Full Text PDF

Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe(0.953)Co(0.047))(2)As(2).

View Article and Find Full Text PDF

The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications.

View Article and Find Full Text PDF

Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Biâ‚‚Seâ‚‚Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Biâ‚‚Seâ‚‚Te crystals show a well-defined linear dispersion without intersection of the conduction band.

View Article and Find Full Text PDF

The heat capacity of MnSi at B = 0 and B = 4 T was measured in the temperature range 2.5-100 K. To analyze the data, calculations of the phonon spectrum and phonon density of states in MnSi were performed.

View Article and Find Full Text PDF