Publications by authors named "Thomas A Kuczmarski"

Background: MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data.

View Article and Find Full Text PDF

Computational analyses of genome sequences may elucidate protein signatures unique to a target pathogen. We constructed a Protein Signature Pipeline to guide the selection of short peptide sequences to serve as targets for detection and therapeutics. In silico identification of good target peptides that are conserved among strains and unique compared to other species generates a list of peptides.

View Article and Find Full Text PDF

Recent events illustrate the imperative to rapidly and accurately detect and identify pathogens during disease outbreaks, whether they are natural or engineered. Particularly for our primary goal of detecting bioterrorist releases, detection techniques must be both species-wide (capable of detecting all known strains of a given species) and species specific. Due to classification restrictions on the publication of data for species that may pose a bioterror threat, we illustrate the challenges of finding such assays using five nonthreat organisms that are nevertheless of public health concern: human immunodeficiency virus (HIV) and four species of hepatitis viruses.

View Article and Find Full Text PDF

Ribosomal DNA sequence analysis, originally conceived as a way to provide a universal phylogeny for life forms, has proven useful in many areas of biological research. Some of the most promising applications of this approach are presently limited by the rate at which sequences can be analyzed. As a step toward overcoming this limitation, we have investigated the use of photolithography chip technology to perform sequence analyses on amplified small-subunit rRNA genes.

View Article and Find Full Text PDF