Publications by authors named "Thomas A Hamilton"

Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines.

View Article and Find Full Text PDF

Glioblastoma (GBM) contains abundant tumor-associated macrophages (TAMs). The majority of TAMs are tumor-promoting macrophages (pTAMs), while tumor-suppressive macrophages (sTAMs) are the minority. Thus, reprogramming pTAMs into sTAMs represents an attractive therapeutic strategy.

View Article and Find Full Text PDF

The importance of PD-1/PD-L1 interaction to alloimmune response is unknown in intestinal transplantation. We tested whether PD-L1 regulates allograft tissue injury in murine intestinal transplantation. PD-L1 expression was observed on the endothelium and immune cells in the intestinal allograft.

View Article and Find Full Text PDF

The selective regulation of bacteria in complex microbial populations is key to controlling pathogenic bacteria. CRISPR nucleases can be programmed to kill bacteria, but require an efficient and broad-host range delivery system to be effective. Here, using an Escherichia coli and Salmonella enterica co-culture system, we show that plasmids based on the IncP RK2 conjugative system can be used as delivery vectors for a TevSpCas9 dual nuclease.

View Article and Find Full Text PDF

Lrig1 marks a distinct population of stem cells restricted to the upper pilosebaceous unit in normal epidermis. Here we report that IL-17A-mediated activation of EGFR plays a critical role in the expansion and migration of Lrig1 stem cells and their progenies in response to wounding, thereby promoting wound healing and skin tumorigenesis. Lrig1-specific deletion of the IL-17R adaptor Act1 or EGFR in mice impairs wound healing and reduces tumor formation.

View Article and Find Full Text PDF

Human Ag R (HuR) is an RNA binding protein in the ELAVL protein family. To study the neuron-specific function of HuR, we generated inducible, neuron-specific HuR-deficient mice of both sexes. After tamoxifen-induced deletion of HuR, these mice developed a phenotype consisting of poor balance, decreased movement, and decreased strength.

View Article and Find Full Text PDF

Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine.

View Article and Find Full Text PDF

This study identifies a novel mechanism linking IL-17A with colon tissue repair and tumor development. Abrogation of IL-17A signaling in mice attenuated tissue repair of dextran sulfate sodium (DSS)-induced damage in colon epithelium and markedly reduced tumor development in an azoxymethane/DSS model of colitis-associated cancer. A novel IL-17A target gene, PLET1 (a progenitor cell marker involved in wound healing), was highly induced in DSS-treated colon tissues and tumors in an IL-17RC-dependent manner.

View Article and Find Full Text PDF

Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation.

View Article and Find Full Text PDF

The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts.

View Article and Find Full Text PDF

Macrophage phagocytosis of particles and pathogens is an essential aspect of innate host defense. Phagocytic function requires cytoskeletal rearrangements that depend on the interaction between macrophage surface receptors, particulates/pathogens, and the extracellular matrix. In the present study we determine the role of a mechanosensitive ion channel, transient receptor potential vanilloid 4 (TRPV4), in integrating the LPS and matrix stiffness signals to control macrophage phenotypic change for host defense and resolution from lung injury.

View Article and Find Full Text PDF

Although IL-17 is emerging as an important cytokine in cancer promotion and progression, the underlining molecular mechanism remains unclear. Previous studies suggest that IL-17 (IL-17A) sustains a chronic inflammatory microenvironment that favors tumor formation. Here we report a novel IL-17-mediated cascade via the IL-17R-Act1-TRAF4-MEKK3-ERK5 positive circuit that directly stimulates keratinocyte proliferation and tumor formation.

View Article and Find Full Text PDF

The scope of functional heterogeneity in macrophages has been defined by two polarized end states known as M1 and M2, which exhibit the proinflammatory activities necessary for host defense and the tissue repair activities required for restoration of homeostasis, respectively. Macrophage populations in different tissue locations exist in distinct phenotypic states across this M1/M2 spectrum and the development and abundance of individual subsets result from the local and systemic action of myeloid colony-stimulating factors (CSFs) including M-CSF and GM-CSF. These factors have relatively non-overlapping roles in the differentiation and maintenance of specific macrophage subsets.

View Article and Find Full Text PDF

The impact of environmental stressors on the magnitude of specific chemokine gene expression was examined in mouse bone marrow-derived macrophages stimulated through various TLRs. Levels of TLR-stimulated CXCL1 and CXCL2 but not CXCL10 or CCL5 mRNAs were selectively enhanced (>10-fold) in stressed macrophages. The amplification was also manifested for other proinflammatory cytokines, including TNF-α, IL-1α, and IL-6.

View Article and Find Full Text PDF

Hepatic stellate cells (HSC) are a major source of the immunoregulatory metabolite all-trans retinoic acid (ATRA), which may contribute to the generation of tolerogenic dendritic cells (DCs) in the liver. The present study seeks to clarify the mechanism(s) through which ATRA promotes the development of tolerogenic DCs. Although bone marrow-derived ATRA-treated DCs (RA-DCs) and conventional DCs had comparable surface phenotype, RA-DCs had diminished stimulatory capacity and could directly inhibit the expansion of DC/OVA-stimulated OT-II T cells.

View Article and Find Full Text PDF

IL-17, a major inflammatory cytokine plays a critical role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report a new function of RNA-binding protein HuR in IL-17-induced Act1-mediated chemokine mRNA stabilization. HuR deficiency markedly reduced IL-17-induced chemokine expression due to increased mRNA decay.

View Article and Find Full Text PDF

Neutrophil trafficking to sites of injury or infection is regulated, in part, by the closely related GRO family of chemokines (CXCL1, -2, and -3). Expression of the GRO chemokine genes is known to be determined by transcriptional bursts in response to proinflammatory stimulation, but post-transcriptional mechanisms that regulate mRNA half-life are now recognized as important determinants. mRNA half-life is regulated via distinct sequence motifs and sequence-specific, RNA-binding proteins, whose function is subject to regulation by extracellular proinflammatory stimuli.

View Article and Find Full Text PDF

Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for signaling by either IL-17 or IL-25, and it is recruited to their receptors (IL-17R and IL-25R) through heterotypic interactions between the SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domain of Act1 and that of the receptor. SEFIR domains have structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors and IL-1R.

View Article and Find Full Text PDF

IL-17 alone is a relatively weak inducer of gene expression, but cooperates with other cytokines, including TNF-alpha, to generate a strong response in part via prolongation of mRNA t(1/2). Because TNFR-associated factor 6 (TRAF6) has been reported to be essential for signaling by IL-17, we examined its involvement in IL-17-mediated mRNA stabilization. Although overexpression of TRAF6 in HeLa cells activates NF-kappaB, it does not stabilize transfected KC mRNA.

View Article and Find Full Text PDF

mRNAs encoding proinflammatory chemokines are regulated posttranscriptionally via adenine-uridine-rich sequences (AREs) located in the 3' untranslated region of the message, which are recognized by sequence-specific RNA-binding proteins. One ARE binding protein, tristetraprolin (TTP), has been implicated in regulating the stability of several ARE-containing mRNAs, including those encoding TNF-alpha and GM-CSF. In the present report we examined the role of TTP in regulating the decay of the mouse chemokine KC (CXCL1) mRNA.

View Article and Find Full Text PDF

The magnitude and character of the inflammatory process are determined in part via the trafficking of leukocytes into sites of injury and infection, and this process depends on proper control of the expression of genes encoding chemoattractant peptides and their receptors. Although these controls operate at multiple mechanistic levels, recent evidence indicates that post-transcriptional events governing the half-life of select mRNAs are important determinants. Adenine-uridine rich elements (AREs) located within 3' untranslated regions (UTRs) confer constitutive mRNA instability and in some cases, stabilization following stimulation by ligands of the Toll-IL-1 receptor (TIR) family.

View Article and Find Full Text PDF

Bacterial infection promotes the infiltration of inflammatory leukocytes mediated in part by receptors for formyl-methionine-terminated peptides. In this study, we show that LPS can markedly enhance the expression of the formyl peptide receptor gene (FPR1) in mouse macrophages and neutrophils by enhancing transcription and by stabilization of the mRNA. In untreated cells, FPR1 mRNA exhibits a half-life of approximately 90 min and this is markedly increased (to >6 h) following stimulation with LPS.

View Article and Find Full Text PDF

Regulation of leukocyte recruitment is an important determinant of the host response to microbial infection. Because tissue infiltration by inflammatory cells represents a potential source of unnecessary tissue damage, the process may be controlled by modulating the expression of chemoattractants and the receptors through which they promote directed leukocyte migration. In the present report, we show that expression of the receptor for chemotactic formylated peptides (FPR1)is negatively regulated in both macrophages and neutrophils by interleukin-4 (IL-4).

View Article and Find Full Text PDF