Publications by authors named "Thomas A Deaton"

Precise control over the assembly of biocompatible three-dimensional (3D) nanostructures would allow for programmed interactions within the cellular environment. Nucleic acids can be used as programmable crosslinkers to direct the assembly of quantum dots (QDs) and tuned to demonstrate different interparticle binding strategies. Morphologies of self-assembled QDs are evaluated via gel electrophoresis, transmission electron microscopy, small-angle X-ray scattering, and dissipative particle dynamics simulations, with all results being in good agreement.

View Article and Find Full Text PDF

Strong evidence of concentration-induced and dissolved electrolyte-induced chromophore aggregation has been universally observed in numerous water soluble bis-cyclometalated Ir(III) photosensitizers bearing the sulfonated diimine ligands bathophenanthroline disulfonate and bathocuproine disulfonate. This new class of aqueous-based soft materials was highly photoluminescent in their aggregated state where detailed spectroscopic investigations of this phenomenon revealed significant blue shifts of their respective photoluminescence emission spectra with concomitant increases in excited-state lifetimes and quantum yields initiating even at micromolar chromophore concentrations in water or upon the addition of a strong electrolyte. A combination of nanoscale particle characterization techniques, static and dynamic photoluminescence spectroscopic studies, along with atomistic molecular dynamics (MD) simulations of these soft materials suggests the formation of small, heterogeneous nanoaggregate structures, wherein the sulfonated diimine ancillary ligand serves as a pro-aggregating subunit in all instances.

View Article and Find Full Text PDF