Publications by authors named "Thomas A Csepe"

Cardiogenic shock (CS) continues to have high mortality and morbidity despite advances in pharmacological, mechanical, and reperfusion approaches to treatment. When CS is refractory to medical therapy, percutaneous mechanical circulatory support (MCS) should be considered. Acute MCS devices, ranging from intra-aortic balloon pumps (IABPs) to percutaneous temporary ventricular assist devices (VAD) to extracorporeal membrane oxygenation (ECMO), can aid, restore, or maintain appropriate tissue perfusion before the development of irreversible end-organ damage.

View Article and Find Full Text PDF

Background: Structural remodeling of human atria plays a key role in sustaining atrial fibrillation (AF), but insufficient quantitative analysis of human atrial structure impedes the treatment of AF. We aimed to develop a novel 3-dimensional (3D) structural and computational simulation analysis tool that could reveal the structural contributors to human reentrant AF drivers.

Methods And Results: High-resolution panoramic epicardial optical mapping of the coronary-perfused explanted intact human atria (63-year-old woman, chronic hypertension, heart weight 608 g) was conducted during sinus rhythm and sustained AF maintained by spatially stable reentrant AF drivers in the left and right atrium.

View Article and Find Full Text PDF

The human sinoatrial node (SAN) efficiently maintains heart rhythm even under adverse conditions. However, the specific mechanisms involved in the human SAN's ability to prevent rhythm failure, also referred to as its robustness, are unknown. Challenges exist because the three-dimensional (3D) intramural structure of the human SAN differs from well-studied animal models, and clinical electrode recordings are limited to only surface atrial activation.

View Article and Find Full Text PDF

Aims: The adult human sinoatrial node (SAN) has a specialized fibrotic intramural structure (35-55% fibrotic tissue) that provides mechanical and electrical protection from the surrounding atria. We hypothesize that late gadolinium-enhanced cardiovascular magnetic resonance (LGE-CMR) can be applied to define the fibrotic human SAN structure in vivo.

Methods And Results: LGE-CMR atrial scans of healthy volunteers (n olu, 23-52 y.

View Article and Find Full Text PDF

Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping.

View Article and Find Full Text PDF

Background: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado).

Methods: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37).

View Article and Find Full Text PDF

Introduction: Despite a century of extensive study on the human sinoatrial node (SAN), the structure-to-function features of specialized SAN conduction pathways (SACP) are still unknown and debated. We report a new method for direct analysis of the SAN microstructure in optically-mapped human hearts with and without clinical history of SAN dysfunction.

Methods: Two explanted donor human hearts were coronary-perfused and optically-mapped.

View Article and Find Full Text PDF

Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins.

View Article and Find Full Text PDF

Background: The hyperpolarization-activated current, If, plays an important role in sinoatrial node (SAN) pacemaking. Surprisingly, the distribution of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human SAN has only been investigated at the mRNA level. Our aim was to define the expression pattern of HCN proteins in human SAN and different atrial regions.

View Article and Find Full Text PDF

Aims: The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging.

Methods And Results: Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view).

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common heart rhythm disturbance, and its treatment is an increasing economic burden on the health care system. Despite recent intense clinical, experimental and basic research activity, the treatment of AF with current antiarrhythmic drugs and catheter/surgical therapies remains limited. Radiofrequency catheter ablation (RFCA) is widely used to treat patients with AF.

View Article and Find Full Text PDF

Heart rhythm is initialized and controlled by the Sinoatrial Node (SAN), the primary pacemaker of the heart. The SAN is a heterogeneous multi-compartment structure characterized by clusters of specialized cardiomyocytes enmeshed within strands of connective tissue or fibrosis. Intranodal fibrosis is emerging as an important modulator of structural and functional integrity of the SAN pacemaker complex.

View Article and Find Full Text PDF

Background: Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF.

Methods And Results: We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs.

View Article and Find Full Text PDF