Cosmetics make up one of the consumer product categories most widely known to contain perfluoroalkyl and polyfluoroalkyl substances (PFASs), including precursors to perfluorooctanoic acid (PFOA) and other perfluoroalkyl acids (PFAAs). Because of the way cosmetics are used, most of the PFASs present in these products are likely to reach wastewater treatment plants (WWTPs), which suggests that cosmetics may contribute significantly to the load of PFOA and other PFASs at WWTPs. However, the majority of PFASs present as intentional ingredients in cosmetics cannot be quantified with the available analytical methods.
View Article and Find Full Text PDFQuaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs.
View Article and Find Full Text PDFEnviron Sci Process Impacts
November 2022
Numerous per- and polyfluoroalkyl substances (PFASs) occur in consumer food packaging due to intentional and unintentional addition, despite increasing concern about their health and environmental hazards. We present a substance flow analysis framework to assess the flows of PFASs contained in plant fiber-based and plastic food packaging to the waste stream and environment. Each year between 2018 and 2020, an estimated 9000 (range 1100-25 000) and 940 (range 120-2600) tonnes per year of polymeric PFASs were used in 2% of food packaging in the U.
View Article and Find Full Text PDFEnviron Sci Technol Lett
October 2021
Sources of exposure to per- and polyfluorinated alkyl substances (PFAS) include food, water, and given that humans spend typically 90% of our time indoors, air and dust. Quantifying PFAS prevalent indoors, such as neutral, volatile PFAS, and estimating their exposure risk to humans is thus important. To accurately measure these compounds indoors, polyethylene (PE) sheets were employed and validated as passive detection tools, and analyzed by gas chromatography-mass spectrometry.
View Article and Find Full Text PDFThis commentary presents a scientific basis for managing as one chemical class the thousands of chemicals known as PFAS (per- and polyfluoroalkyl substances). The class includes perfluoroalkyl acids, perfluoroalkylether acids, and their precursors; fluoropolymers and perfluoropolyethers; and other PFAS. The basis for the class approach is presented in relation to their physicochemical, environmental, and toxicological properties.
View Article and Find Full Text PDFWe synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes.
View Article and Find Full Text PDFCarpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain.
View Article and Find Full Text PDFThe groundwater remediation industry continues to progress towards less expensive, more sustainable in situ remedies. However, in situ treatment requires site-specific performance data that can be difficult or impossible to obtain using conventional laboratory microcosm studies. To improve the representativeness of laboratory scale treatability studies, and aid in remedial technology implementation, we developed the In Situ Microcosm Array (ISMA).
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are a class of organic contaminants notable for their extreme persistence. The unique chemical properties of these compounds make them difficult to remove from water using most standard water treatment techniques. To gain insight into the possibility of remediating contaminated groundwater by in situ chemical oxidation with heat-activated persulfate, PFAA removal and the generation of transformation products were evaluated under laboratory conditions.
View Article and Find Full Text PDFPoly- and perfluoroalkyl substances (PFASs) have been detected in an increasing number of water supplies. In many instances, the contamination is associated with the use of PFAS-containing aqueous film-forming foams (AFFF) in firefighting activities. To investigate the potential for remediating AFFF contamination in groundwater with heat-activated persulfate, PFAS oxidation and the generation of transformation products was evaluated under well-controlled conditions.
View Article and Find Full Text PDFThe drinking water of more than six million Americans in numerous communities has been found to contain highly fluorinated chemicals at concentrations of concern. Certain of these chemicals, including perfluorooctanoic acid and perfluorooctane sulfonic acid, are known to be persistent, bioaccumulative, and associated with adverse health outcomes in humans and animal models. The possible health impacts of exposure to highly fluorinated chemicals are of great concern to communities whose water has been impacted.
View Article and Find Full Text PDFDrinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial analysis of 2013-2015 national drinking water PFAS concentrations from the U.S.
View Article and Find Full Text PDFSulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids.
View Article and Find Full Text PDFPersulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene.
View Article and Find Full Text PDF