Publications by authors named "Thokhir B Shaik"

A molecular modeling assisted rational design and synthesis of naphthalene diimide linked bis-naphthalimides as potential DNA interactive agents is described. Chemical templates incorporating naphthalene diimide as a linker in bis-naphthalimide motif were subjected to molecular docking analysis at specific intercalation and telomeric DNA G-quadruplex sites. Excellent results were obtained, which were better than the standards.

View Article and Find Full Text PDF

Based on our previous results and literature precedence, a series of 2-anilinopyridinyl-benzothiazole Schiff bases were rationally designed by performing molecular modeling experiments on some selected molecules. The binding energies of the docked molecules were better than the E7010, and the Schiff base with trimethoxy group on benzothiazole moiety, 4y was the best. This was followed by the synthesis of a series of the designed molecules by a convenient synthetic route and evaluation of their anticancer potential.

View Article and Find Full Text PDF

Newer therapeutics can be developed in drug discovery by adopting the strategy of scaffold hopping of the privileged scaffolds from known bioactive compounds. This strategy has been widely employed in drug-discovery processes. Structure-based docking studies illustrate the basic underlying concepts and reveal that interactions of the sulfonamide group and hydrophobic interactions are crucial.

View Article and Find Full Text PDF

A series of colchicine site binding tubulin inhibitors were synthesized by the modification of the combretastatin pharmacophore. The ring B was replaced by the pharmacologically relevant benzothiazole scaffolds, and the cis configuration of the olefinic bond was restricted by the incorporation of a triazole and tetrazole rings which is envisaged by the structural resemblance to a tubulin inhibitor like combretastatin (CA-4). These compounds were evaluated for their antiproliferative activity on selected cancer cell lines and an insight in the structure activity relationship was developed.

View Article and Find Full Text PDF

A series of colchicine site binding tubulin inhibitors were designed and synthesized by the modification of the combretastatin A-4 (CA4) pharmacophore. The ring B was replaced by the pharmacologically relevant benzimidazole or benzothiazole scaffolds, and the cis-configuration of the olefinic bond was restricted by the incorporation of a pyridine ring which is envisaged by the structural resemblance to a tubulin inhibitor like E7010. These compounds were evaluated for their antiproliferative activity on selected cancer cell lines and an insight in the structure activity relationship was developed.

View Article and Find Full Text PDF

A series of pyrazoline derivatives and corresponding chalcone intermediates with substituents same as combretastatin-A4(CA-4) conjugated with triazole nucleus has been synthesized and evaluated for their anticancer potential. Sulphorhodamine B(SRB) assay indicated compound 12c to be the most active compound from the series with GI50 value of 6.7 μm against the human liver carcinoma cell line HepG2.

View Article and Find Full Text PDF

Introduction: The significant challenge posed by cancer to human healthcare has led to the exploration of new approaches to combat it. Synthetic lethality (SL) is one such emerging area in the development of novel anticancer therapies. SL can be described as lethality (cell death) resulting from the combination of the two mutations, wherein the mutation in either of the two codependent genes in normal or cancer cells is viable.

View Article and Find Full Text PDF

A series of 2-anilinopyridine dimers have been synthesized and evaluated for their anticancer potential. Most of the compounds have showed significant growth inhibition of the cell lines tested and compound 4d was most effective amongst the series displaying a GI50 of 0.99 μM specifically against the prostate cancer cell line (DU145).

View Article and Find Full Text PDF

A series of chalcone conjugates featuring the imidazo[2,1-b]thiazole scaffold was designed, synthesized, and evaluated for their cytotoxic activity against five human cancer cell lines (MCF-7, A549, HeLa, DU-145 and HT-29). These new hybrid molecules have shown promising cytotoxic activity with IC50 values ranging from 0.64 to 30.

View Article and Find Full Text PDF

A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position.

View Article and Find Full Text PDF

A series of chalcone-amidobenzothiazole conjugates (9a-k and 10a,b) have been synthesized and evaluated for their anticancer activity. All these compounds exhibited potent activity and the IC(50) of two potential compounds (9a and 9f) against different cancer cell lines are in the range of 0.85-3.

View Article and Find Full Text PDF

A series of new terphenyl benzimidazoles (3a-z and 3aa-ad) were synthesized and evaluated for their anticancer activity. All the 30 compounds have shown moderate to good anticancer potency, however some of the compounds (3j, 3m-t and 3aa-ad) exhibited prominent anticancer potency with GI(50) values ranging from <0.1 to 9.

View Article and Find Full Text PDF

Introduction: p53 plays a central role in protecting the integrity of the genome. Its activity is ubiquitously lost in cancers, either by inactivation of its protein (p53 pathway) or by mutation in the p53 gene, thereby indicating its importance in understanding cancer and as a therapeutic target. Activated p53 is known to induce cell cycle arrest thereby leading to apoptosis and has been the subject of intensive research in the area of medicinal chemistry.

View Article and Find Full Text PDF

A series of 4β-alkylamidochalcone and 4β-cinnamido linked podophyllotoxin congeners have been synthesized. All the twenty nine compounds were evaluated for anticancer activity against five human cancer cell lines (A-549, A375, MCF-7, HT-29 and ACHN). Some of the synthesized compounds showed good anticancer activity that is comparable to etoposide.

View Article and Find Full Text PDF

Series of 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives 7a-7zb, 8a-8d and 9a-9d were synthesized and screened for their in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H(37)Rv (MTB) and cytotoxicity against three human cancer cell lines including A549, SK-N-SH and HeLa. The results indicate that six compounds are more potent and 7za is most effective anti-mycobacterial derivative compared to the standard drugs Ethambutol and Ciprofloxacin. However, 12 compounds exhibited cytotoxicity against human neuroblastoma cell line; amongst them the compound 7v is most effective compared to the standard drug Doxorubicin.

View Article and Find Full Text PDF

Two series of compounds (5-14 and 15-23) based on the scaffolds of 2-(1,1-dioxido-4-phenyl-4Hbenzo[e][1,2,4]thiadiazin-3-yl)-N-(4-methoxyphenyl)hydrazinecarboxamide (5) and 2-((4-methoxyphenyl)amino)-10-phenyl-10H-benzo[e][1,2,4]triazolo[1,5-b][1,2,4]thiadiazine 5,5-dioxide (15) respectively, were designed and synthesized. These compounds were tested for anticancer activity against various cancer cell lines including lung, ovary, prostate, breast and colon cancers. They exhibited moderate to good inhibitory activity against the above cell lines and compound 9 was found to be the most active one from these two series.

View Article and Find Full Text PDF

A new class of nitrovinyl biphenyl compounds based on the structures of colchicines and allocolchicines were designed, synthesized, and shown to inhibit tubulin polymerization and cause mitotic arrest. A majority of these compounds were found to possess potent anticancer properties, with IC(50) values in the range of 0.05-7 μM, and are equally potent with colchicine in HeLa and MCF-7 cells.

View Article and Find Full Text PDF

A series of novel conjugates of 4-aza-2,3-didehydropodophyllotoxins (11a-w) were synthesized by a straightforward one-step multicomponent synthesis that demonstrated cytotoxicity against five human cancer cell lines (breast, oral, colon, lung and ovarian). All the twenty three compounds (11a-w) have been examined for the inhibition of tubulin polymerization. Among these compounds, 11a, 11k and 11p exhibited inhibition of polymerization tubulin comparable to podophyllotoxin apart from disruption of microtubule organization within the cells.

View Article and Find Full Text PDF

The phytochemical investigation of the hexane extract of the Hedychium coronarium led to the isolation and identification of two new labdane diterpenes (1 and 2) along with 10 known metabolites (3-12). The structures of the new compounds were established on the basis of spectroscopic data analysis (1D and 2D NMR and MS). Cytotoxic activities of the isolates were studied against the A-549 (lung cancer), SK-N-SH (human neuroblastoma), MCF-7 (breast cancer) and HeLa (cervical cancer) cell lines.

View Article and Find Full Text PDF

A simple and highly efficient method has been developed for the synthesis of 3,3-diindolyl oxyindoles by the reaction of indoles with isatin or 5-fluoro isatin using a catalytic amount (5 mol%) of FeCl(3) at room temperature in a short reaction time in high yields. All these compounds were evaluated against a panel of five human cancer lines and most of them showed potent cytotoxicity. Compound 4b showed IC(50) of 4.

View Article and Find Full Text PDF

The racemic total synthesis of elegansidiol, farnesiferol B, and farnesiferol D has been obtained following a Diels-Alder approach. Gillman addition, cross metathesis reaction are the other key steps involved in the target synthesis.

View Article and Find Full Text PDF