Publications by authors named "Thiyagu Subramani"

Organic light-emitting diodes aim to achieve high efficiency by using excitons to achieve a 100% quantum efficiency (QE). However, developing functional organic materials for this purpose can be time-consuming. To address this challenge, a new method has been proposed to incorporate inorganic quantum dots into the organic luminescent layer to enable unlimited exciton formation and approach the 100% QE limit.

View Article and Find Full Text PDF

Graphene sheets displaying partial crystallinity and nanowire structures were formed on a silicon substrate with silicon nanowires by utilizing an amorphous carbon source. The carbon source was deposited onto the silicon nanostructured substrate by breaking down a polymer precursor and was crystallized by a nickel catalyst during relatively low temperature inert gas annealing. The resulting free-standing graphene-based material can remain on the substrate surface after catalyst removal or can be removed as a separate film.

View Article and Find Full Text PDF

Solar energy is considered as a potential alternative energy source. The solar cell is classified into three main types: i) solar cells based on bulk silicon materials (monocrystalline, polycrystalline), ii) thin-film solar cells (CIGS, CdTe, DSSC, etc.), and iii) solar cells based on nanostructures and nanomaterials.

View Article and Find Full Text PDF

This study expresses our results on surface-enhanced Raman spectroscopy (SERS) analyses of neonicotinoid insecticide thiacloprid, i.e., Calypso 480 SC, in quantities much smaller than usually applied in the agricultural medicine.

View Article and Find Full Text PDF

In this study, we fabricate uniform silicon nanowire (SiNW) arrays on 6-inch mono- and multi-crystalline wafers by employing the improved solution-processed metal-assisted chemical etching (MacEtch) method. Furthermore, the improved MacEtch can be applied to various crystalline orientation wafers. The SiNW arrays are 470 nm in length with high density; they demonstrate a good optical trapping effect and reflectance well below 6% over a broad wavelength range from 300 to 1100 nm.

View Article and Find Full Text PDF

Highly ordered silicon nanowires (SiNWs) were fabricated by nanoimprint lithography and Bosch etching methods. A polycrystalline silicon shell was grown to form a radial p-n junction. To enhance its anti-reflection properties and conductivity, a thin ITO layer was deposited on the SiNWs solar cell, then a micro-grid electrode was introduced to minimize the metal areas to maximize carrier collection.

View Article and Find Full Text PDF

Advanced gold (Au) and silver (Ag) nanostructures were produced by laser techniques on printer paper substrate. Surface-enhanced Raman spectroscopy (SERS) analyses of the fungicide mancozeb (Dithane DG) and insecticide thiamethoxam (Aktara 25 BG) in quantities smaller than usually applied in agricultural medicine were performed for the first time assisted by the structures fabricated. The investigations and results show an easy alternative and cheap way to detect small amounts or residue of harmful environmental pollutants, which has a direct bearing on food quality and thus on human health.

View Article and Find Full Text PDF

Core-shell nanowires (NWs) composed of silicon and germanium can be used to realize high electron (hole) mobility transistors (HEMTs) by suppressing impurity scattering due to their band offset structure and selective doping. Boron doped p-type Si/intrinsic-Ge (i-Ge) core-shell NW structures are selected to study this phenomenon. To produce HEMT devices, hole gas accumulation must be controlled in the impurity undoped i-Ge shell layers.

View Article and Find Full Text PDF

Silicon (Si) is used in various application fields such as solar cells and electric devices. Functionalization of Si nanostructures is one way to further improve the properties of these devices such as these. This Review summarizes recent results of solar cell and Li-ion battery applications using Si-related nanostructures.

View Article and Find Full Text PDF

Unlabelled: The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and

Pedot: PSS, and the electron selective layer cesium carbonate (Cs2CO3) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode.

View Article and Find Full Text PDF

Unlabelled: Nanostructured silicon hybrid solar cells are promising candidates for a new generation photovoltaics because of their light-trapping abilities and solution processes. However, the performance of hybrid organic/Si nanostructure solar cells is hindered because of carrier recombination at surface and poor coverage of organic material poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (

Pedot: PSS) on nanostructures. Here we demonstrate low-pressure-assisted coating method of

Pedot: PSS on surface-modified silicon nanotips with broadband light-trapping characteristics to improve interface property and to achieve high-efficiency hybrid solar cells through a solution process.

View Article and Find Full Text PDF

This paper reports an organic-inorganic hybrid solar cell with a hierarchical surface composed of high density silicon nanoholes and micro-desert textures. High-efficiency organic-inorganic hybrid solar cell Si/PEDOT-PSS with a hierarchical surface, showing a power conversion efficiency of 12%. The structure provides excellent light absorption over 97% for the spectral range of 300 to 1100 nm with a thickness of 60 μm due to internal multiple reflections caused by subwavelength features of high density silicon nanoholes and micro-desert textures.

View Article and Find Full Text PDF

Due to the limited diffusion length of carriers in polymer solar cells (PSCs), the path of carriers is a crucial factor that determines the device performance. Zinc oxide nanorods (NRs) as the electron transport channel can reduce electron-hole recombination and transport the electron to the electrode efficiently for poly(3-hexylthiophene) (P3HT), but have been seldom demonstrated for low-bandgap polymers. Here we successfully applied ZnO NRs, which were grown via the hydrothermal method, as a platform to enhance PSC efficiency for various low-bandgap polymers.

View Article and Find Full Text PDF

In the hydrogenated amorphous silicon [a-Si:H]-thin film solar cell, large amounts of traps reduce the carrier's lifetime that limit the photovoltaic performance, especially the power conversion efficiency. The nanowire structure is proposed to solve the low efficiency problem. In this work, we propose an amorphous silicon [a-Si]-solar cell with a nanocone array structure were implemented by reactive-ion etching through a polystyrene nanosphere template.

View Article and Find Full Text PDF

In this work, microcrystalline silicon nanostalagmite [μc-SiNS] arrays have been successfully fabricated on glass by catalytic etching process through a template. The template, polystyrene [PS] nanospheres, with diameter and density of 30 to approximately 50 nm and 1010/cm2, respectively, was obtained by a modified nanophase separation of PS-containing block copolymer. The length of μc-SiNS could be controlled by the duration of etching time.

View Article and Find Full Text PDF