Arch Environ Contam Toxicol
January 2021
The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2021
Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co.
View Article and Find Full Text PDFHydrogeochemical understanding of groundwater is essential for the effective management of groundwater. This study has been carried out to have concrete data for the seasonal variations in hydrogeochemistry of groundwater in central Tamilnadu forming a complex geological terrain with a varied lithology. A total of 244 groundwater samples were collected during four different seasons, viz, southwest monsoon (SWM), summer (SUM), postmonsoon (POM), and northeast monsoon (NEM) from bore wells.
View Article and Find Full Text PDFThis study considered the temporal variations in rainfall and water level patterns as governing factors, which influence the geochemical process of coastal aquifer around Pondicherry, South India. Rainfall and water level data were collected from 2006 to 2016, which showed that the amount of rainfall from 2006 to 2011 was higher than that of 2011 to 2016. To understand the geochemical process governing groundwater, samples were collected during 2006 (n = 54), followed by 2011 (n = 93), and during 2016 (n = 63) as part of continuous observation.
View Article and Find Full Text PDF