Publications by authors named "Thivanka Muthumalage"

Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit , , and experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products.

View Article and Find Full Text PDF

Some firms and marketers of electronic cigarettes (e-cigarettes; a type of electronic nicotine delivery system (ENDS)) and refill liquids (e-liquids) have made claims about the safety of ingredients used in their products based on the term "GRAS or Generally Recognized As Safe" (GRAS). However, GRAS is a provision within the definition of a food additive under section 201(s) (21 U.S.

View Article and Find Full Text PDF

Inhaling xenobiotics, such as tobacco smoke is a major risk factor for pulmonary diseases, e.g., COPD/emphysema, interstitial lung disease, and pre-invasive diseases.

View Article and Find Full Text PDF

Cigarette smoke (CS) leads to increased oxidative stress, inflammation, and exaggerated senescence, which are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). While the role of cellular senescence in COPD is known, it is not clear if the removal of senescent cells could alleviate the disease symptoms. To test this, we used the novel mouse model-p16-3MR, and studied the effect of ganciclovir (GCV)-mediated removal of senescent cells after chronic CS (3 months) and environmental tobacco smoke (ETS) (6 months) exposure to CS.

View Article and Find Full Text PDF

Menthol and tobacco flavors are available for almost all tobacco products, including electronic cigarettes (e-cigs). These flavors are a mixture of chemicals with overlapping constituents. There are no comparative toxicity studies of these flavors produced by different manufacturers.

View Article and Find Full Text PDF

Flavoring chemicals in electronic nicotine delivery systems have been shown to cause cellular inflammation; meanwhile, the effects of fruit and tobacco flavors on lung inflammation by nose-only exposures to mice are relatively unknown. We hypothesized that exposure to flavored e-cigarettes would cause lung inflammation in C57BL/6 J mice. The mice were exposed to air, propylene glycol/vegetable glycerin, and flavored e-liquids: Apple, Cherry, Strawberry, Wintergreen, and Smooth & Mild Tobacco, one hour per day for three days.

View Article and Find Full Text PDF

Background: Electronic cigarette (e-cigarette) vaping, containing nicotine and/or Δ, Δ or Δ or Δ tetrahydrocannabinol (Δ-THC), is associated with an outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). Despite thousands being hospitalised with EVALI, much remains unknown about diagnosis, treatment and disease pathogenesis. Biomarkers of inflammation, oxidative stress and lipid mediators may help identify e-cigarette users with EVALI.

View Article and Find Full Text PDF

Mitochondrial quality control is sustained by Miro1 (Rhot1), a calcium-binding membrane-anchored GTPase during mitophagy. The exact mechanism that operates the interaction of Miro1 with mitophagy machinery and their role in cigarette smoke (CS)-induced mitochondrial dysfunction that often results in lung inflammation is unclear. We hypothesized that Miro1 plays an important role in regulating mitophagy machinery and the resulting lung inflammation by CS exposure to mice.

View Article and Find Full Text PDF

Studies have shown that aerosols generated from flavored e-cigarettes contain Reactive Oxygen Species (ROS), promoting oxidative stress-induced damage within pulmonary cells. Our lab investigated the ROS content of e-cigarette vapor generated from disposable flavored e-cigarettes (vape bars) with and without nicotine. Specifically, we analyzed vape bars belonging to multiple flavor categories (Tobacco, Minty Fruit, Fruity, Minty/Cool (Iced), Desserts, and Drinks/Beverages) manufactured by various vendors and of different nicotine concentrations (0-6.

View Article and Find Full Text PDF

Multi-walled carbon nanotubes are engineered nanomaterials (ENMs) that have a fiber-like structure which may be a concern for the development of cellular senescence. Premature senescence, a state of irreversible cell cycle arrest, is implicated in the pathogenesis of chronic lung diseases such as pulmonary fibrosis (PF). However, the crosstalk between downstream pathways mediating fibrotic and senescent responses of MWCNTs is not well-defined.

View Article and Find Full Text PDF

Tobacco smoking is known to be involved in the pathogenesis of several cardiopulmonary diseases. Additionally, smokers are highly susceptible to infectious agents due to weakened immunity. However, the progression of lung injury based on SARS-CoV-2-mediated COVID-19 pathogenesis amongst smokers and those with pre-existing pulmonary diseases is not known.

View Article and Find Full Text PDF

Cigarette smoke (CS) is the main etiological factor in the pathogenesis of emphysema/chronic obstructive pulmonary disease (COPD), which is associated with abnormal epithelial-mesenchymal transition (EMT). Previously, we have shown an association among circadian rhythms, CS-induced lung inflammation, and nuclear heme receptor α (REV-ERBα), acting as an antiinflammatory target in both pulmonary epithelial cells and fibroblasts. We hypothesized that molecular clock REV-ERBα plays an important role in CS-induced circadian dysfunction and EMT alteration.

View Article and Find Full Text PDF

Introduction: Emerging heated tobacco products (HTPs) were designed to reduce exposure to toxicants from cigarette smoke (CS) by avoiding burning tobacco and instead heating tobacco. We studied the effects of short-term inhalation of aerosols emitted from HTP called IQOS, on lung damage and immune-cell recruitment to the lungs in mice.

Methods: Numerous markers of lung damage and inflammation including albumin and lung immune-cell infiltrates, proinflammatory cytokines, and chemokines were quantified in lungs and bronchoalveolar (BAL) fluid from IQOS, CS, or air-exposed (negative control) mice.

View Article and Find Full Text PDF

Electronic nicotine delivery systems/devices (ENDS) such as electronic cigarettes (e-cigarettes) have been made available globally, with the intent to reduce tobacco smoking. To make these products more appealing to young adults, many brands have added flavoring agents. However, these flavoring agents are shown to progressively result in lung toxicity when inhaled via e-cigarettes.

View Article and Find Full Text PDF

Electronic cigarette (e-cig) usage has risen dramatically worldwide over the past decade. While they are touted as a safe alternative to cigarettes, recent studies indicate that high levels of nicotine and flavoring chemicals present in e-cigs may still cause adverse health effects. We hypothesized that an e-liquid containing a mixture of tobacco, coconut, vanilla, and cookie flavors would induce senescence and disrupt wound healing processes in pulmonary fibroblasts.

View Article and Find Full Text PDF

Current FDA regulations have resulted in a ban of flavored e-cigarette pods, with only menthol and tobacco flavored pods being exempted. Previous work using menthol and tobacco-flavored e-cigarettes have been shown to induce mitochondrial reactive oxygen species. We hypothesized that exposure to pod-based JUUL Menthol and Virginia Tobacco aerosols will alter mitochondrial respiration and electron transport chain protein levels.

View Article and Find Full Text PDF

Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanism that mediate, toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChR α7).

View Article and Find Full Text PDF

Recently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT), may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products.

View Article and Find Full Text PDF

Recently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT) may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products.

View Article and Find Full Text PDF

Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanisms that mediate toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChRα7).

View Article and Find Full Text PDF

The Centers for Disease Control declared e-cigarette, or vaping, product use-associated lung injury (EVALI) a national outbreak due to the high incidence of emergency department admissions and deaths. We have identified chemical constituents in e-cig counterfeit cartridges and compared these to medical-grade and CBD containing cartridges. Apart from vitamin E acetate (VEA) and tetrahydrocannabinol (THC), other potential toxicants were identified including solvent-derived hydrocarbons, silicon conjugated compounds, various terpenes, pesticides/plasticizers/polycaprolactones, and metals.

View Article and Find Full Text PDF

The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses.

View Article and Find Full Text PDF

New emerging tobacco products, especially electronic cigarettes (E-Cig) or electronic nicotine delivery systems (ENDS), have gained a huge popularity, particularly in younger populations. The lack of sufficient evidence-based health effect studies has promoted widespread use/abuse with the assumption that E-Cig or ENDS and/or vaping products are safer and less toxic than conventional tobacco smoking. However, the recent escalation in acute lung injuries and their associated fatalities among ENDS or vaping product users has now brought attention to this silent epidemic investigation into the constituents of ENDS/vaping products and their toxic effects on pulmonary health.

View Article and Find Full Text PDF

Background: Electronic cigarettes (e-cigs) were introduced as electronic nicotine delivery systems, and have become very popular in the USA and globally. There is a paucity of data on systemic injury biomarkers of vaping in e-cig users that can be used as a noninvasive assessment of vaping-associated lung injuries. We hypothesised that characterisation of systemic biomarkers of inflammation, anti-inflammatory, oxidative stress, vascular and lipid mediators, growth factors, and extracellular matrix breakdown may provide information regarding the toxicity of vaping in e-cig users.

View Article and Find Full Text PDF