The fish processing sector produces millions of tons of trash annually-a biologically dangerous substance that could eventually turn into a source of pathogenic contamination. This work successfully shows how to extract tilapia fish scale hydroxyapatite with ultrasonic assistance and modify it using gamma-irradiated chitosan to remove malachite green from water samples. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and dynamic light scattering.
View Article and Find Full Text PDFSulfonated cellulose (SC) was successfully prepared through a two-step process of gamma radiation and subsequently sulfonation with potassium metabisulfite of microcrystalline cellulose extracted from sugarcane bagasse. The effect of gamma radiation dose on cellulose showed an increment of oxidation degree, which was evidenced by the intensity ratio of I (carbonyl)/ I (aliphatic) from FTIR analysis. The obtained SC was introduced into polyether block amide/polyethylene glycol diacrylate (PEBAX/PEGDA) polymer matrix as a reinforcement and hydrophilic filler for improving electrolyte affinity and thermal stability of its composite membrane.
View Article and Find Full Text PDFThis study presented a green, facile and efficient approach for a new combination of targeted gold nanohybrids functionalized with folate-hydrophobic-quaternized pullulan delivering hydrophobic camptothecin (CPT-GNHs@FHQ-PUL) to enhance the efficacy, selectivity, and safety of these systems. New formulations of spherical CPT-GNHs@FHQ-PUL obtained by bio-inspired strategy were fully characterized by TEM, EDS, DLS, zeta-potential, UV-vis, XRD, and ATR-FTIR analyses, showing a homogeneous particles size with an average size of approximately 10.97 ± 2.
View Article and Find Full Text PDFThis research aimed to scale up the production of starch-based super water absorbent (SWA) and to validate the practical benefits of SWA for agricultural applications. SWA was successfully prepared in an up-scaling production by radiation-induced graft polymerization of acrylic acid onto cassava starch. Chemical characterization by FTIR and thermal characterization by TGA showed results that differentiated starting materials from the prepared SWA, thus confirming effective preparation of starch-based SWA via radiation-induced graft polymerization.
View Article and Find Full Text PDF