Publications by authors named "Thithuha Phan"

The objective of this study was to evaluate the coating integrity performance and corrosion protection property of trimethylsilane (TMS) plasma nanocoatings that were directly deposited onto cobalt chromium (CoCr) L605 cardiovascular stents. Hydrophilic surfaces were achieved for the TMS plasma nanocoatings that were deposited onto the coronary stents through NH/O (2:1 molar ratio) plasma post-treatment. With a coating thickness of approximately 20-25 nm, the TMS plasma nanocoatings were highly durable and able to resist delamination and cracking from crimping and expansion by a Model CX with a J-Crimp Station.

View Article and Find Full Text PDF

In-stent restenosis and thrombosis remain to be long-term challenges in coronary stenting procedures. The objective of this study was to evaluate the in vitro biological responses of trimethylsilane (TMS) plasma nanocoatings modified with NH /O (2:1 molar ratio) plasma post-treatment (TMS + NH /O nanocoatings) on cobalt chromium (CoCr) alloy L605 coupons, L605 stents, and 316L stainless steel (SS) stents. Surface properties of the plasma nanocoatings with up to 2-year aging time were characterized by wettability assessment and x-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

The objective of this study was to evaluate the biocompatibility of trimethylsilane (TMS) plasma nanocoatings modified with NH/O (2:1 molar ratio) plasma post-treatment onto cobalt chromium (CoCr) L605 alloy coupons and stents for cardiovascular stent applications. Biocompatibility of plasma nanocoatings was evaluated by coating adhesion, corrosion behavior, ion releasing, cytotoxicity, and cell proliferation. Surface chemistry and wettability were studied to understand effects of surface properties on biocompatibility.

View Article and Find Full Text PDF