para-Nitrophenyl (PNP) ethers of glycosides are important building blocks en route to functional carbohydrates. They are stable in neutral media, however, under basic conditions such as during the Zemplén deacylation of sugars, aryl migration is frequently observed. We have employed a library of O-PNP-substituted methyl glycosides of the manno-, galacto-, gluco- and altro-series to study the kinetics of aryl migration in MeOH/sodium methoxide using NMR spectroscopy revealing that migration between cis-oriented OH groups is faster than between trans-oriented ones.
View Article and Find Full Text PDFWe describe the synthesis of the full set of the so far unknown methyl altrobiosides and the initial analysis of the conformational dynamic which occurs in some of the synthesized compounds. d-Altrose chemistry has largely been neglected as it is a rare sugar and has first to be synthesized from glucose or mannose, respectively. Nevertheless, d-altrose is particularly interesting as the energy barrier between the complementary chair conformations is rather low and therefore dynamic mixtures of conformers might occur.
View Article and Find Full Text PDFCarbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside.
View Article and Find Full Text PDFThe functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles.
View Article and Find Full Text PDFHere, we present a covalent nanolayer system that consists of a conductive and biorepulsive base layer topped by a layer carrying biorecognition sites. The layers are built up by electropolymerization of pyrrole derivatives that either carry polyglycerol brushes (for biorepulsivity) or glycoside moieties (as biorecognition sites). The polypyrrole backbone makes the resulting nanolayer systems conductive, opening the opportunity for constructing an electrochemistry-based sensor system.
View Article and Find Full Text PDFFollowing the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation.
View Article and Find Full Text PDFThe conformational properties of monosaccharides constitute fundamental features of oligosaccharides. While the energy landscape of monosaccharides can be altered by a specific biochemical environment or by chemical modifications, the analysis of resulting dynamic conformational equilibria is not feasible by experimental means alone. In this work, a series of β-d-xylopyranosides is used to outline how a combination of experimental NMR parameters and computed molecular properties can be used to determine conformers and quantify the composition of conformational equilibria.
View Article and Find Full Text PDFAzobenzene photoswitches are valuable tools for controlling properties of molecular systems with light. We have been investigating azobenzene glycoconjugates to probe carbohydrate-protein interactions and to design glycoazobenzene macrocycles with chiroptical and physicochemical properties modulated by light irradiation. To date, direct conjugation of glycosides to azobenzenes was performed by reactions providing target compounds in limited yields.
View Article and Find Full Text PDFThe investigation of carbohydrate recognition in a natural environment suffers from the complexity of overlapping functional effects such as multivalency and heteromultivalency effects. Another key factor in carbohydrate recognition is the presentation mode of glycoligands in three-dimensional (3D) space. In order to trace out the effect of 3D ligand presentation, we utilized an oligosaccharide model to precisely control the spatial relation between a mannose ligand (Man) and a glucose moiety (Glc).
View Article and Find Full Text PDFPhotoresponsive glycoconjugates based on the azobenzene photoswitch are valuable molecules which can be used as tools for the investigation of carbohydrate-protein interactions or as precursors of shape-switchable molecular architectures, for example. To access such compounds, glycosylation of 4,4'-dihydroxyazobenzene (DHAB) is a critical step, frequently giving heterogeneous results because DHAB is a challenging glycosyl acceptor. Therefore, DHAB glucosylation was studied using nine different glycosyl donors, and reaction conditions were systematically varied in order to find a reliable procedure, especially towards the preparation of azobenzene bis-glucosides.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs.
View Article and Find Full Text PDFThe synthesis of carbohydrate-functionalized thermosensitive poly(-isopropylacrylamide) microgels and their ability to bind carbohydrate-binding pathogens upon temperature switch are reported. It is found that the microgels' binding affinity is increased above their lower critical solution temperature (LCST), enabling thermo-triggerable capture of pathogens. Here, a series of microgels with comparatively low mannose functionalization degrees below 1 mol % is achieved by a single polymerization step.
View Article and Find Full Text PDFWe have recently demonstrated, by employing azobenzene glycosides, that bacterial adhesion to surfaces can be switched through reversible reorientation of the carbohydrate ligands. To investigate this phenomenon further, we have turned here to more complex-that is, multivalent-azobenzene glycoclusters. We report on the synthesis of a photosensitive trivalent cluster mannoside conjugated to an azobenzene hinge at the focal point.
View Article and Find Full Text PDFMultivalent carbohydrate-protein interactions are key events in cell recognition processes and have been extensively studied by means of synthetic glycomimetics. To date, frequently the valency, i.e.
View Article and Find Full Text PDF1-(N-Phenyl)amino-1-deoxy-α-D-manno-hept-2-ulose (2) and two multivalent BSA-based structures 7 and 8, d-manno-configured C-glycosyl-type compounds derived from an Amadori rearrangement, were evaluated as ligands for mannoside-specific lectins of various sources. The determination of the concentration corresponding to 50% of inhibition (IC) is described. Multivalency turned out to effectively influence ligand selectivity and lectin binding.
View Article and Find Full Text PDFThis study investigates the influence of an increasingly hydrophobic backbone of multivalent glycomimetics based on sequence-defined oligo(amidoamines) on their resulting affinity toward bacterial lectins. Glycomacromolecules are obtained by stepwise assembly of tailor-made building blocks on solid support, using both hydrophobic aliphatic and aromatic building blocks to enable a gradual change in hydrophobicity of the backbone. Their binding behavior toward model lectin Concanavalin A (ConA) is evaluated using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) showing higher affinities for glycomacromolecules with higher content of hydrophobic and aromatic moieties in the backbone.
View Article and Find Full Text PDFThe importance of bacterial lectins for adhesion, pathogenicity, and biofilm formation is well established for many Gram-positive and Gram-negative bacteria. However, there is very little information available about lectins of the tuberculosis-causing bacterium, (). In this paper we review previous studies on the carbohydrate-binding characteristics of mycobacteria and related proteins, discussing their potential relevance to infection and pathogenesis.
View Article and Find Full Text PDFGlycolipids as constituents of cell membranes play an important role in cell membrane functioning. To enable the structural modification of membranes on demand, embedding of photosensitive glycolipid mimetics was envisioned and novel amphiphilic glycolipid mimetics comprising a photoswitchable azobenzene unit were synthesized. In this study, the photochromic properties of these glycolipid mimetics were analyzed by means of UV/Vis spectroscopy and reversible photoswitching.
View Article and Find Full Text PDFPhotoaffinity labeling is frequently employed for the investigation of ligand-receptor interactions in solution. We have employed an interdisciplinary methodology to achieve facile photolabeling of the lectin FimH, which is a bacterial protein, crucial for adhesion, colonization and infection. Following our earlier work, we have here designed and synthesized diazirine-functionalized mannosides as high-affinity FimH ligands and performed an extensive study on photo-crosslinking of the best ligand (mannoside ) with a series of model peptides and FimH.
View Article and Find Full Text PDFThe Mitsunobu reaction basically consists in the conversion of an alcohol into an ester under inversion of configuration, employing a carboxylic acid and a pair of two auxiliary reagents, mostly triphenylphosphine and a dialkyl azodicarboxylate. This reaction has been frequently used in carbohydrate chemistry for the modification of sugar hydroxy groups. Modification at the anomeric position, leading mainly to anomeric esters or glycosides, is of particular importance in the glycosciences.
View Article and Find Full Text PDFGlycoscience, despite its myriad of challenges, promises to unravel the causes of, potential new detection methods for, and novel therapeutic strategies against, many disease states. In the last two decades, glyco-gold nanoparticles have emerged as one of several potential new tools for glycoscientists. Glyco-gold nanoparticles consist of the unique structural combination of a gold nanoparticle core and an outer-shell comprising multivalent presentation of carbohydrates.
View Article and Find Full Text PDFA series of precision glycomacromolecules is prepared following previously established solid phase synthesis allowing for controlled variations of interligand spacing and the overall number of carbohydrate ligands. In addition, now also different linkers are installed between the carbohydrate ligand and the macromolecular scaffold. The lectin binding behavior of these glycomacromolecules is then evaluated in isothermal titration calorimetry (ITC) and kinITC experiments using the lectin Concanavalin A (Con A) in its dimeric and tetrameric form.
View Article and Find Full Text PDF"… Science that only serves its own interests, that looks away when things get uncomfortable, or that surveys favored territories rather than boldly and curiously breaking new ground will endanger society's trust in the scientific search for truth. This is not a good perspective for a learned society. As a community with responsibilities and values, the GDCh must cultivate a culture that has the well-being of the entire population and the planet in mind …" Read more in the Editorial by Thisbe K.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the main causative agent of tuberculosis (Tb), has a complex cell envelope which forms an efficient barrier to antibiotics, thus contributing to the challenges of anti-tuberculosis therapy. However, the unique Mtb cell wall can be considered an advantage and be utilized to selectively label Mtb bacteria. Here we introduce three azido pentoses as new compounds for metabolic labeling of Mtb: 3-azido arabinose (3AraAz), 3-azido ribose (3RiboAz), and 5-azido arabinofuranose (5AraAz).
View Article and Find Full Text PDFEuropean J Org Chem
September 2016
The Amadori rearrangement was investigated for the synthesis of -glycosyl-type neoglycoconjugates. Various amines including diamines, amino-functionalized glycosides, lysine derivatives, and peptides were conjugated with two different heptoses to generate non-natural -glycosyl-type glycoconjugates of the d- and d- series. With these studies, the scope and limitations of the Amadori rearrangement as a conjugation method have been exemplified with respect to the carbohydrate substrate, as well as the amino components.
View Article and Find Full Text PDF