Documentary climate data describe evidence of past climate arising from predominantly written historical documents such as diaries, chronicles, newspapers, or logbooks. Over the past decades, historians and climatologists have generated numerous document-based time series of local and regional climates. However, a global dataset of documentary climate time series has never been compiled, and documentary data are rarely used in large-scale climate reconstructions.
View Article and Find Full Text PDFAnnual-to-decadal variability in northern midlatitude temperature is dominated by the cold season. However, climate field reconstructions are often based on tree rings that represent the growing season. Here we present cold-season (October-to-May average) temperature field reconstructions for the northern midlatitudes, 1701-1905, based on extensive phenological data (freezing and thawing dates of rivers, plant observations).
View Article and Find Full Text PDFPhenological data have become increasingly important as indicators of long-term climate change. Consequently, long-term homogeneity of the records is an important aspect. In this paper, we apply a breakpoint detection algorithm to the phenological series from the Swiss Phenology Network (SPN).
View Article and Find Full Text PDFThe Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 "Establishing a European phenological data platform for climatological applications" working as a single access point for European-wide plant phenological data.
View Article and Find Full Text PDFInt J Biometeorol
December 2016
Temperature sensitivity of plant phenology (S) is a determining factor of as to what degree climate change impacts on plant species. Fu et al . (Int J Biometeorol 60:1611-1613, 2016) claimed that long long-term linear trends mask phenological shifts.
View Article and Find Full Text PDFThe impact of spring temperature forcing on the timing of leaf unfolding of plants (temperature sensitivity, S) is one important indicator of how and to what degree plant species track climate change. Fu et al. (Nature 526:104-107, 2015) found that S has significantly decreased from the 1980-1994 to the 1999-2013 period for seven mid-latitude tree species in Europe.
View Article and Find Full Text PDFExisting evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy.
View Article and Find Full Text PDFThe change in the phenology of plants or animals reflects the response of living systems to climate change. Numerous studies have reported a consistent earlier spring phenophases in many parts of middle and high latitudes reflecting increasing temperatures with the exception of China. A systematic analysis of Chinese phenological response could complement the assessment of climate change impact for the whole Northern Hemisphere.
View Article and Find Full Text PDFMankind has observed and documented life cycle stages of plants and animals for a long time. However, it was comparatively recently that the newly emerging science was given its name. The name of Charles Morren and the year 1853 are being cited, although not frequently.
View Article and Find Full Text PDF