Network slicing is crucial to the 5G architecture because it enables the virtualization of network resources into a logical network. Network slices are created, isolated, and managed using software-defined networking (SDN) and network function virtualization (NFV). The virtual network function (VNF) manager must devise strategies for all stages of network slicing to ensure optimal allocation of physical infrastructure (PI) resources to high-acceptance virtual service requests (VSRs).
View Article and Find Full Text PDFNetwork slicing shows promise as a means to endow 5G networks with flexible and dynamic features. Network function virtualization (NFV) and software-defined networking (SDN) are the key methods for deploying network slicing, which will enable end-to-end (E2E) isolation services permitting each slice to be customized depending on service requirements. The goal of this investigation is to construct network slices through a machine learning algorithm and allocate resources for the newly created slices using dynamic programming in an efficient manner.
View Article and Find Full Text PDFThe network slicing of physical infrastructure is required for fifth-generation mobile networks to make significant changes in how service providers deliver and defend services in the face of evolving end-user performance requirements. To perform this, a fast and secure slicing technique is employed for node allocation and connection establishment, which necessitates the usage of a large number of domain applications across the network. PROMETHEE-II and SLE algorithms were used in this study's approach to network design for node allocation and link construction, respectively.
View Article and Find Full Text PDF