Publications by authors named "Thirupathi Yasotha"

Background: The amniotic membrane (AM) has shown immense potential in repairing wounds due to its great regenerative qualities. Although the role of AM as a biological scaffold in repairing wounds has been studied well, the tissue regenerative potential of AM-derived mesenchymal stem cells (MSCs) and conditioned media (CM) derived from it remains to be discovered as of now. Here, we examined the wound healing abilities of fresh and frozen thawed rabbit AM (rAM) along with the MSCs and their lyophilised CM in rabbits challenged with skin wounds.

View Article and Find Full Text PDF

Cell lineage determination during mesenchymal stem cell (MSCs) differentiation is a highly orchestrated process involving diverse signaling pathways and distinct classes of regulatory molecules. Bone morphogenetic protein (BMP) signaling positively influence the osteoblast lineage determination, whereas the Notch signaling may have a dimorphic action. Effective regenerative therapy for repairing bone defects requires ample knowledge of the signaling pathways responsible for the differentiation of MSCs.

View Article and Find Full Text PDF

The COVID-19 outbreak, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was first identified in China, and it has quickly become a global threat to public health due to its rapid rate of transmission and fatalities. Angiotensin-converting enzyme 2 (ACE2) has been identified as a receptor that mediates the entry of SARS-CoV-2 into human cells, as in the case of severe acute respiratory syndrome coronavirus (SARS-CoV). Several studies have reported that ACE2 expression is higher in Leydig, Sertoli and seminiferous ductal cells of males, as well as in ovarian follicle cells of females, suggesting possible potential pathogenicity of the coronavirus in the reproductive system.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy.

View Article and Find Full Text PDF

The present study was conducted to see the in vivo developmental potency of caprine parthenogenetic embryos generated in a modified way. The good quality caprine oocytes were matured in presence of cytochalasin B (CCB) and then activated by 7% ethanol followed by 2 mM 6-dimethyl amino purine (6-DMAP) and embryo development was recorded. Early stage parthenogenetic embryos (two to four cells) were surgically transferred in recipients (10).

View Article and Find Full Text PDF