Silver Oxide (AgO)-Guar gum nanocomposite was fabricated via a simple sonochemical co-precipitation method. The obtained photocatalyst was characterized with various techniques such as X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy along with energy dispersion X-ray spectroscopy. The findings have demonstrated that AgO nanoparticles are spherical of 5-20 nm and were dispersed on the surface of polysaccharide guar gum to form AgO-guar gum nanocomposite.
View Article and Find Full Text PDFA heterostructured Schiff base ligand (Benzildiethylenetriamine)-Silver-Guar gum encapsulated nanocomposites was intended to prepare by simple sonication assisted reflux method. Appropriate composition of purified guar gum, Schiff base ligand and silver nitrate were used for the synthesis. The synthesised nanocomposites were characterised by photoluminescence spectrum, UV-vis diffuse reflectance spectrophotometer, Fourier transform infra-red spectroscopy, X-ray diffractometer, scanning electron microscopy and transmission electron microscopy.
View Article and Find Full Text PDFCuO@TiO heterojunction nanocomposites were prepared via ultrasonic method towards the removal of the environmental pollutant of MO by the visible light photocatalytic approach. The structure of prepared CuO@TiO heterojunction nanocomposites was analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, photoluminescence spectroscopy, UV-Visible absorption spectroscopy, diffused reflectance spectroscopy. The photocatalytic degradation ability was tested using methyl orange as a model pollutant.
View Article and Find Full Text PDFThis study presents the synthesis of guar gum-zero valent iron nanocomposites (ZGNC) by a simple ultrasound co-precipitation method. The guar gum, one of the most cost effective due to ease of manufacture by extraction, abundant availability and high export value accounts almost 80% of total production in India. Guar gum, a natural polymer was used as binders in pharmaceutical formulations, and acts as a reducing and capping agent for the synthesis of zero valent iron nanoparticles (ZVI).
View Article and Find Full Text PDFIn this present study, a facile and green method to synthesize highly stable FeO-guar gum nanocomposite using ultrasound was reported. Thermal gravimetric analysis, fourier transform infrared spectroscopy, X-ray diffractometry, field emission scanning electron microscopy, energy dispersive spectroscopy, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the crystal structure, size and morphology, elemental composition, metal-metal and metal-oxygen bonds of the synthesized nanocomposites. FeO-guar gum nanocomposite with a size of ∼48nm was obtained as from TEM.
View Article and Find Full Text PDFThe catalysts such as Fe, BiO, and Fe-doped BiO were synthesized for the sonophotocatalytic treatment of synthetic dye and real textile wastewater. The resultant catalysts were characterized for its size and uniform shape using x-ray diffractogram (XRD) and scanning electron microscopy (SEM) which signified the nanorod shape formed BiO. The higher ultraviolet light absorbance capacity of the catalysts was also evident using diffuse reflectance spectroscopy (DRS).
View Article and Find Full Text PDFA facile one-step sonochemical synthesis of Cu2O nanocubes has been developed by ultrasound irradiation of copper sulfate in the presence of polyvinylpyrrolidone and ascorbic acid at pH 11. During sonication, the reaction between acoustic cavitation-generated radicals and CuSO4 produced Cu(OH)2 intermediate which then reacted with ascorbic acid to generate Cu2O nanocubes. The products were characterized by FT-IR, XRD, HRTEM, AFM and particle size analyzer.
View Article and Find Full Text PDFThrough an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8-12nm in diameter.
View Article and Find Full Text PDFEnviron Technol
December 2010
In this study, we have attempted to reveal the physical or mechanistic features of the sonochemical degradation of 2,4-dichlorophenol (2,4-DCP). The principal physical phenomenon underlying sonochemical effects is radial motion of cavitation bubbles and production of radicals from transient collapse of these bubbles. We reveal some important physical facets of sonochemical degradation of 2,4-DCP by adopting dual approach of coupling experimental results with simulations of radial motion of cavitation bubble.
View Article and Find Full Text PDFThis paper addresses the physical features of the ultrasonic cavitational synthesis of zinc ferrite particles and tries to establish the relationship between cavitation physics and sonochemistry of the zinc ferrite synthesis. A dual approach of coupling experimental results with simulations of radial motion of cavitation bubbles has been adopted. The precursors for the zinc ferrite, viz.
View Article and Find Full Text PDFThis paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by ()OH radicals produced from cavitation bubbles (either in the bubble-bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble-liquid interfacial region.
View Article and Find Full Text PDFThis article attempts to discern the physical (or mechanistic) features of the sonochemical degradation of two major and ubiquitous nitroaromatic pollutants, viz. nitrobenzene and p-nitrophenol. The fundamental physical phenomenon behind sonochemical degradation of pollutants is radial motion of cavitation bubbles.
View Article and Find Full Text PDF