Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. : The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. : The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years.
View Article and Find Full Text PDFModern anticancer research has employed advanced computational techniques and artificial intelligence methods for drug discovery and development, along with the massive amount of generated clinical and in silico data over the last decades. Diverse computational techniques and state-of-the-art algorithms are being developed to enhance traditional Rational Drug Design pipelines and achieve cost-efficient and successful anticancer candidates to promote human health. Towards this direction, we have developed a pharmacophore- based drug design approach against MCT4, a member of the monocarboxylate transporter family (MCT), which is the main carrier of lactate across the membrane and highly involved in cancer cell metabolism.
View Article and Find Full Text PDFInt J Mol Sci
March 2021
Monocarboxylate transporters (MCTs) are of great research interest for their role in cancer cell metabolism and their potential ability to transport pharmacologically relevant compounds across the membrane. Each member of the MCT family could potentially provide novel therapeutic approaches to various diseases. The major differences among MCTs are related to each of their specific metabolic roles, their relative substrate and inhibitor affinities, the regulation of their expression, their intracellular localization, and their tissue distribution.
View Article and Find Full Text PDFWe previously identified DNAJC11, a mitochondrial outer membrane protein of unknown function, as a novel genetic cause in modeled neuromuscular disease. To understand the physiological role of DNAJC11, we employed a proteomic approach for the identification of the DNAJC11 interactome, through the expression of DNAJC11-FLAG in HEK293FT cells and transgenic mice. Our analysis confirmed known DNAJC11-interacting proteins including members of the MICOS complex that organize mitochondrial cristae formation.
View Article and Find Full Text PDFReceptor activator of nuclear factor-κB ligand (RANKL), a member of the Tumor Necrosis Factor (TNF) superfamily, constitutes the master regulator of osteoclast formation and bone resorption, whereas its involvement in inflammatory diseases remains unclear. Here, we used the human TNF transgenic mouse model of erosive inflammatory arthritis to determine if the progression of inflammation is affected by either genetic inactivation or overexpression of RANKL in transgenic mouse models. TNF-mediated inflammatory arthritis was significantly attenuated in the absence of functional RANKL.
View Article and Find Full Text PDFThe milk protein β-lactoglobulin has been widely studied since its discovery, both as a purified protein and in mixtures with other milk proteins, where its effect on the processing properties is of importance to the dairy industry. The protein can bind a variety of small hydrophobic molecules, which may allow its use as an oral delivery vehicle. In the present study we have examined the binding of odd-numbered fatty acids by isothermal calorimetry (ITC), X-ray crystallography and computer modelling to provide a clearer picture of the extent and variability of the central binding pocket.
View Article and Find Full Text PDFIn this work we report a fast and efficient virtual screening protocol for discovery of novel bioinspired synthetic mosquito repellents with lower volatility and, in all likelihood, increased protection time as compared with their plant-derived parental compounds. Our screening protocol comprises two filtering steps. The first filter is based on the shape and chemical similarity to known plant-derived repellents, whereas the second filter is based on the predicted similarity of the ligand's binding mode to the Anopheles gambiae odorant binding protein (AgamOBP1) relative to that of DEET and Icaridin to the same OBP.
View Article and Find Full Text PDFChem Biol Drug Des
November 2017
A series of 2,2'-dihydroxybenzophenones and their carbonyl N-analogues were studied as potential inhibitors against human glutathione transferase M1-1 (hGSTM1-1) purified from recombinant E. coli. Their screening revealed an inhibition against hGSTM1-1 within a range of 0-42% (25 μM).
View Article and Find Full Text PDFGlutathione (GSH) structure-guided tripeptide analogues were designed and synthesized by solid phase technology, purified (≥95%) by RP and/or GF column chromatography, to identify those that, compared with GSH, exhibited similar or higher binding and catalytic efficiency toward the MDR-involved human GSTP1-1 isoenzyme, and could discriminate between the allozymic expression products of the polymorphic human GSTP1 gene locus, designated as hGSTP1*A (Ile(104) /Ala(113) ), hGSTP1*B (Val(104) /Ala(113) ), and hGSTP1*C (Val(104) /Val(113) ). The analogues bear single amino acid alterations as well as alterations in more than one position. Some analogues showed remarkable allozyme selectivity, binding catalytically to A (I, II, IV, XII), to C (V and XVI), to A and C (III, VII, XIV) or to all three allozymes (XV).
View Article and Find Full Text PDFThe selectivity of certain benzophenones and their carbonyl N-analogues was investigated towards the human GSTP1-1 allozymes A, B and C involved in MDR. The allozymes were purified from extracts derived from E. coli harbouring the plasmids pEXP5-CT/TOPO-TA-hGSTP1*A, pOXO4-hGSTP1*B or pOXO4-hGSTP1*C.
View Article and Find Full Text PDFThe MDR-involved human GSTA1-1, an important isoenzyme overexpressed in several tumors leading to chemotherapeutic-resistant tumour cells, has been targeted by 2,2'-dihydroxybenzophenones and some of their carbonyl N-analogues, as its potential inhibitors. A structure-based library of the latter was built-up by a nucleophilic cleavage of suitably substituted xanthones to 2,2'-dihydroxy-benzophenones (5-9) and subsequent formation of their N-derivatives (oximes 11-13 and N-acyl hydrazones 14-16). Screening against hGSTA1-1 led to benzophenones 6 and 8, and hydrazones 14 and 16, having the highest inhibition potency (IC₅₀ values in the range 0.
View Article and Find Full Text PDFMuch physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery.
View Article and Find Full Text PDFGlutathione transferases (GSTs) are cell detoxifiers involved in multiple drug resistance (MDR), hampering the effectiveness of certain anticancer drugs. To our knowledge, this is the first report on well-defined synthetic xanthones as GST inhibitors. Screening 18 xanthones revealed three derivatives bearing a bromomethyl and a methyl group (7) or two bromomethyl groups (8) or an aldehyde group (17), with high inhibition potency (>85%), manifested by low IC(50) values (7: 1.
View Article and Find Full Text PDFOverexpression of human GSTA1-1 in tumor cells is part of MDR mechanisms. We report on the synthesis of 11 pyrrole derivatives as hGSTA1-1 inhibitors starting from 1-methyl-2-[(2-nitrobenzylsulfanyl]-1H-pyrrole. Molecular modeling revealed two locations in the enzyme H binding site: the catalytic primary one accommodating shorter and longer derivatives and the secondary one, where shorter derivatives can occupy.
View Article and Find Full Text PDFThe major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown.
View Article and Find Full Text PDFInsect odorant binding proteins (OBPs) are the first components of the olfactory system to encounter and bind attractant and repellent odors emanating from various sources for presentation to olfactory receptors, which trigger relevant signal transduction cascades culminating in specific physiological and behavioral responses. For disease vectors, particularly hematophagous mosquitoes, repellents represent important defenses against parasitic diseases because they effect a reduction in the rate of contact between the vectors and humans. OBPs are targets for structure-based rational approaches for the discovery of new repellent or other olfaction inhibitory compounds with desirable features.
View Article and Find Full Text PDFThe MIR algorithm provides an ab initio prediction of a protein's core residues. An improved version, the MIR2, is presented and validated on 3203 proteins from PDB. Structures are decomposed in Closed Loops, their limits constituting the observed core residues.
View Article and Find Full Text PDFBackground: Dynamic positron emission tomography studies produce a large amount of image data, from which clinically useful parametric information can be extracted using tracer kinetic methods. Data reduction methods can facilitate the initial interpretation and visual analysis of these large image sequences and at the same time can preserve important information and allow for basic feature characterization.
Methods: We have applied principal component analysis to provide high-contrast parametric image sets of lower dimensions than the original data set separating structures based on their kinetic characteristics.
IEEE/ACM Trans Comput Biol Bioinform
October 2007
An algorithm called Bidirectional Long Short-Term Memory Networks (BLSTM) for processing sequential data is introduced. This supervised learning method trains a special recurrent neural network to use very long ranged symmetric sequence context using a combination of nonlinear processing elements and linear feedback loops for storing long-range context. The algorithm is applied to the sequence-based prediction of protein localization and predicts 93.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
February 2007
The explosive growth of the bioinformatics field has led to a large amount of data and software applications publicly available as web resources. However, the lack of persistence of web references is a barrier to a comprehensive shared access. We conducted a study of the current availability and other features of primary bioinformatics web resources (such as software tools and databases).
View Article and Find Full Text PDFAn important stage in macromolecular crystallography is that of phase extension and refinement when initial phase estimates are available from isomorphous replacement or anomalous scattering or other methods. For this purpose, an alternative method called the twin variables (TwiV) method has been proposed. The algorithm is based on alternately transferring the phase information between the twin variable sets.
View Article and Find Full Text PDFThe pharmacophoric concept plays an important role in ligand-based drug design methods to describe the similarity and diversity of molecules, and could also be exploited as a molecular representation scheme. A three-point pharmacophore method was used as a molecular representation perception. This procedure was implemented for dopamine antagonists of the D(2) receptor subtype.
View Article and Find Full Text PDFUnlabelled: We have developed an integrated web-based relational database information system, which offers an extensive search functionality of validated entries containing available bioinformatics computing resources. This system, called MetaBasis, aims to provide the bioinformatics community, and especially newcomers to the field, with easy access to reliable bioinformatics databases and tools. MetaBasis is focused on non-commercial and open-source software tools.
View Article and Find Full Text PDFThe analysis of dynamic positron emission tomography (PET) studies provides clinically useful parametric information, but often requires complex and time-consuming compartmental or non-compartmental techniques. Independent component analysis (ICA), a statistical method used for feature extraction and signal separation, is applied to dynamic PET studies to facilitate the initial interpretation and visual analysis of these large image sequences. ICA produces parametric images, where structures with different kinetic characteristics are assigned opposite values and readily discriminated, improving the identification of lesions and facilitating the posterior detailed kinetic analysis.
View Article and Find Full Text PDF