A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite (glutathione-GO/ZnO) as electrode material for the high-performance piroxicam sensor. The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam (oxidation potential is 0.
View Article and Find Full Text PDFElectrochemical Synchronous detection of cadmium (Cd(II)) and lead (Pb(II)) was obtained by acid treated multiwalled carbon nanotube (A-MWCNT) functionalized with hyaluronic acid (Hyalu) and this mixture was separately further modified with l-cysteine (l-Cys) and l-serine (l-Ser). Under the optimized circumstance best voltammetric responses were produced by A-MWCNT/Hyalu/l-Cys and A-MWCNT/Hyalu/l-Ser modified electrodes. The peak current was linearly dependent on the Cd(II) and Pb(II) concentrations in the range from 0.
View Article and Find Full Text PDFAn electrochemical sensor using lanthanide element Gadolinium doped Zinc oxide and functionalized Multiwalled Carbon Nanotube (Gd-ZnO:f-MWCNT) fabricated electrode was presented for the simultaneous determination of vitamins (Riboflavin (VB₂) and Pyridoxine (VB)). The nanocomposite was characterized by FESEM, EDS, XRD and FTIR techniques. The CV, EIS and DPV techniques were used to evaluate the electrochemical properties of the nanocomposite.
View Article and Find Full Text PDFAn electrochemical sensor using three dimensional (3D) cloves bud like gadolinium doped ZnO nanoflowers strewn reduced graphene oxide (GZO@rGO) modified glassy carbon electrode was proposed for the sensitive and selective detection of l-dopa. The GZO@rGO nanocomposite was synthesized by hydrothermal method and characterized by a variety of analytical and spectroscopy techniques, viz. Field Emission Scanning Electron Microscopy, X-Ray Diffraction, Fourier Transformed Infrared Spectrum and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFThe present work describes the electrochemical detection of Cd using reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and glutathione (GSH) modified glassy carbon electrode (GCE) by Square Wave Anodic Stripping Voltammetry (SWASV). The prepared nanocomposite was characterized by X-ray diffraction (XRD), RAMAN, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The influence of experimental parameters such as effect of pH, choice of supporting electrolyte, deposition time and deposition potential, were optimized.
View Article and Find Full Text PDFSimultaneous determination of Cd and Pb was achieved by using graphene oxide/κ-carrageenan/l-cysteine (GO/κ-Car/l-Cys) nanocomposite modified glassy carbon electrode (GCE) by Square Wave Anodic Stripping Voltammetry (SWASV). The morphology and functionalization of the prepared nanocomposite were characterized by XRD analysis, Raman spectroscopy, Field emission scanning electron microscopy and FTIR analysis. Under optimum conditions, outstanding linearity was obtained for both Cd and Pb in the range from 5 to 50nM with the detection limits as 0.
View Article and Find Full Text PDFIn this study, we developed a novel composite material containing biological macromolecules like heparin and chitosan coated on reduced graphene oxide (rGO) for the modification of glassy carbon electrode (hep/CS-rGO/GC). It can be applied for the sensitive electrochemical detection of Pb by square wave anodic stripping voltammetry (SWASV). The physicochemical analysis such as XRD, FTIR, FESEM and Raman spectroscopy techniques revealed that an effective functionalization occurred at the rGO surface.
View Article and Find Full Text PDFLarge pore HY zeolite was modified with phosphoric acid by wet method. The modified zeolite was converted to Na(+) form using aqueous NaHCO(3) solution(.) The Na(+) form of modified zeolite, represented as PNa(2)Y, was characterized by XRD, BET surface area, SEM, and AAS techniques.
View Article and Find Full Text PDFThe use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This paper deals with the removal of Acid Red 114 (AR 114) from aqueous solutions using activated carbons prepared from agricultural waste materials such as gingelly (sesame) (Sp), cotton (Cp) and pongam (Pp) seed shells. Optimum conditions for AR 114 removal were found to be pH 3, adsorbent dosage=3g/L of solution and equilibrium time=4h.
View Article and Find Full Text PDFThe adsorption of rhodamine B dye was carried out using sodium montmorillonite clay. The effect of parameters such as pH, adsorbent dosage and initial dye concentration was studied. The Langmuir and Freundlich isotherm models were applied and the Langmuir model was found to best fit the equilibrium isotherm data.
View Article and Find Full Text PDFThe adsorption of Acid Violet 17 (AV17) was carried out using various activated carbons prepared from sunflower seed hull (SSH), an agricultural solid waste by-product. The effect of parameters such as agitation time, initial dye concentration, adsorbent dosage, pH and temperature were studied. The Langmuir and Freundlich isotherm models were applied and the Langmuir model was found to best report the equilibrium isotherm data.
View Article and Find Full Text PDF