Non-volatile resistance change under electric stimulation in many metal-oxides is a promising path to next generation memory devices. However, the underlying mechanisms are still not fully understood. In situ transmission electron microscopy experiments provide a powerful tool to elucidate these mechanisms.
View Article and Find Full Text PDFThe transport of potassium through praseodymium-manganese oxide (PrMnO; PMO) has been investigated by means of the charge attachment induced transport (CAIT) technique. To this end, potassium ions have been attached to the front side of a 250 nm thick sample of PMO. The majority of the potassium ions become neutralized at the surface of the PMO, while some of the potassium ions diffuse through.
View Article and Find Full Text PDF