Publications by authors named "Thilo Kahne"

Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface.

View Article and Find Full Text PDF

Procaspase-8 is a key mediator of death receptor (DR)-mediated pathways. Recently, the role of post-translational modifications (PTMs) of procaspase-8 in controlling cell death has received increasing attention. Here, using mass spectrometry screening, pharmacological inhibition and biochemical assays, we show that procaspase-8 can be targeted by the PRMT5/RIOK1/WD45 methylosome complex.

View Article and Find Full Text PDF

Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells.

View Article and Find Full Text PDF

The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly.

View Article and Find Full Text PDF

Background: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another important improvement in the use of nanoparticles as delivery systems is the conjugation of a targeting agent that enables the nanoparticles to accumulate in a specific tissue.

View Article and Find Full Text PDF

Ubiquitin-specific proteases represent a family of enzymes that catalyze the cleavage of ubiquitin from specific substrate proteins to regulate their activity. USP48 is a rarely studied USP, which has recently been linked to inflammatory signaling via regulation of the transcription factor nuclear factor kappa B. Nonetheless, a crystal structure of USP48 has not yet been resolved and potent inhibitors are not known.

View Article and Find Full Text PDF

Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes.

View Article and Find Full Text PDF

Vitamins B (thiamine) and B (pyridox (al/ine/amine)) are crucial for central nervous system (CNS) function and neurogenesis due to the coenzyme action of their phosphorylated derivatives in the brain metabolism of glucose and neurotransmitters. Here, the non-coenzyme action of thiamine on the major mammalian producers of pyridoxal-5'-phosphate (PLP), such as pyridoxal kinase (PdxK) and pyridoxine 5'-phosphate oxidase (PNPO), is characterized. Among the natural thiamine compounds, thiamine triphosphate (ThTP) is the best effector of recombinant human PdxK (hPdxK) in vitro, inhibiting hPdxK in the presence of Mg but activating the Zn -dependent reaction.

View Article and Find Full Text PDF

Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in which pregnant female rats (Sprague-Dawley strain; = 16 per group) were exposed to lighting schedule manipulation every 3-4 days reversing the photoperiod completely or light/dark photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain, glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine (NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in response to high-fat diet (HFD). In adult CPS male (100-200 days old; = 8 per group), we found increasing body weight, under SD and adiposity.

View Article and Find Full Text PDF

Duplications and deletions of short chromosomal fragments are increasingly recognized as the cause for rare neurodevelopmental conditions and disorders. The gene encodes a protein kinase important for neuronal development and is part of a microduplication region on chromosome 12 that is associated with intellectual disabilities, autism, and epilepsy. We developed a conditional transgenic mouse with increased Ndr2 expression in postmigratory forebrain neurons to study the consequences of an increased gene dosage of this Hippo pathway kinase on brain circuitry and cognitive functions.

View Article and Find Full Text PDF

The biogenesis of small uridine-rich nuclear ribonucleoproteins (UsnRNPs) depends on the methylation of Sm proteins catalyzed by the methylosome and the subsequent action of the SMN complex, which assembles the heptameric Sm protein ring onto small nuclear RNAs (snRNAs). In this sophisticated process, the methylosome subunit pICln (chloride conductance regulatory protein) is attributed to an exceptional key position as an 'assembly chaperone' by building up a stable precursor Sm protein ring structure. Here, we show that-apart from its autophagic role-the Ser/Thr kinase ULK1 (Uncoordinated [unc-51] Like Kinase 1) functions as a novel key regulator in UsnRNP biogenesis by phosphorylation of the C-terminus of pICln.

View Article and Find Full Text PDF

The p140Cap adaptor protein, encoded by the gene, negatively controls tumor progression, as demonstrated in the subgroup of -amplified breast cancers and in neuroblastoma patients, where high p140Cap expression predicts a decreased probability of developing metastasis, with a significantly prolonged survival. In NeuT mice, a preclinical model or Her2-positive breast cancer, we previously reported that p140Cap counteracts Her2-dependent breast cancer progression, associating with the specific Rac1 Guanine Nucleotide Exchange Factor, Tiam1, and limiting the activation of both Tiam1 and Rac1. Here, we show that in TUBO breast cancer cells derived from the NeuT tumors, p140Cap expression causes Tiam1 redistribution along the apicobasal junctional axis.

View Article and Find Full Text PDF

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, K 1.

View Article and Find Full Text PDF

Breast cancer is still one of the most common cancers for women. Specified therapeutics are indispensable for optimal treatment. In previous studies, it has been shown that RL2, the recombinant fragment of human κ-Casein, induces cell death in breast cancer cells.

View Article and Find Full Text PDF

The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH.

View Article and Find Full Text PDF

The transcription factors of the nuclear factor κB (NF-κB) family play a pivotal role in the cellular response to DNA damage. Genotoxic stress-induced activation of NF-κB differs from the classical canonical pathway by shuttling of the NF-κB Essential Modifier (IKKγ/NEMO) subunit through the nucleus. Here, we show that DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA double-strand break (DSB) repair, triggers the phosphorylation of NEMO by genotoxic stress, thereby enabling shuttling of NEMO through the nucleus with subsequent NF-κB activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how c-FLIP proteins regulate the assembly and function of the death-inducing signaling complex (DISC) and death effector domain (DED) filaments, which are crucial for initiating apoptosis via CD95/Fas.
  • Through biochemical assays and modeling, it was found that c-FLIP can bind to both FADD and procaspase-8, contributing to the formation of complex networks of DED filaments that enhance DISC function.
  • These discoveries enhance our understanding of apoptosis regulation and suggest potential new strategies for targeting the extrinsic apoptosis pathway in therapeutic settings.
View Article and Find Full Text PDF

The gene of encodes a highly abundant 47 kDa synaptic vesicle-associated protein. null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin.

View Article and Find Full Text PDF

Autophagy is a degradative process in which cellular organelles and proteins are recycled to restore homeostasis and cellular metabolism. Autophagy can be either a prosurvival or a prodeath process and remains one of the most fundamental processes for cell vitality. Thus autophagy modulation is an important approach for reinforcement anticancer therapeutics.

View Article and Find Full Text PDF

Cognitive impairments can be devastating for quality of life, and thus, preventing or counteracting them is of great value. To this end, the present study exploits the potential of the plant and identifies the constituent ferulic acid eicosyl ester [icosyl-(2)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoate (FAE-20)] as a memory enhancer. We show that food supplementation with dried root material from dose-dependently improves odor-taste reward associative memory scores in larval and prevents the age-related decline of this appetitive memory in adult flies.

View Article and Find Full Text PDF

The subcommissural organ (SCO) is an ancient and conserved brain gland secreting into cerebrospinal fluid (CSF) glycoproteins that form the Reissner fiber (RF). The present investigation was designed to further investigate the dynamic of the biosynthetic process of RF glycoproteins prior and after their release into the CSF, to identify the RF proteome and N-glycome and to clarify the mechanism of assembly of RF glycoproteins. Various methodological approaches were used: biosynthetic labelling injecting S-cysteine and H-galactose into the CSF, injection of antibodies against galectin-1 into the cerebrospinal fluid, light and electron microscopical methods; isolated bovine RF was used for proteome analyses by mass spectrometry and glycome analysis by xCGE-LIF.

View Article and Find Full Text PDF

Purpose: Cell fate determinants Scrib and Llgl1 influence self-renewal capacity of hematopoietic stem cells (HSCs). Scrib-deficient HSCs are functionally impaired and lack sufficient repopulation capacity during serial transplantation and stress. In contrast, loss of Llgl1 leads to increased HSC fitness, gain of self-renewal capacity and expansion of the stem cell pool.

View Article and Find Full Text PDF

Transforming growth factor-β (TGFβ)-activated kinase 1 (TAK1) plays a central role in controlling the cellular pro-inflammatory response via the activation of the nuclear factor κB (NF-κB)- and mitogen-activated protein (MAP) kinases-dependent transcriptional programs. Here, we show that depletion of TAK1 and the TAK1-binding proteins TAB1 and TAB2 affects NF-κB, JNK and p38 phosphorylation and suppresses NF-κB activity in AGS cells infected with or stimulated with the cytokines TNF and IL-1β. To increase our understanding of TAK1 regulation and function, we performed mass spectrometry (MS)-based TAK1 interactomics.

View Article and Find Full Text PDF

Cell fate determinants influence self-renewal potential of hematopoietic stem cells. Scribble and Llgl1 belong to the Scribble polarity complex and reveal tumor-suppressor function in drosophila. In hematopoietic cells, genetic inactivation of Llgl1 leads to expansion of the stem cell pool and increases self-renewal capacity without conferring malignant transformation.

View Article and Find Full Text PDF

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur.

View Article and Find Full Text PDF