Publications by authors named "Thilina Gunasekara"

We report mechanistic studies on the insertion reactions of [(NHC)Cu(μ-H)] complexes with carbonyl substrates by UV-vis and H NMR spectroscopic kinetic studies, H/D isotopic labelling, and X-ray crystallography. The results of these comprehensive studies show that the insertion of Cu-H with an aldehyde, ketone, activated ester/amide, and unactivated amide consist of two different rate limiting steps: the formation of Cu-H monomer from Cu-H dimer for more electrophilic substrates, and hydride transfer from a transient Cu-H monomer for less electrophilic substrates. We also report spectroscopic and crystallographic characterization of rare Cu-hemiacetalate and Cu-hemiaminalate moieties from the insertion of an ester or amide into the Cu-H bond.

View Article and Find Full Text PDF

We have demonstrated the ability of TEMPO to catalyze H· transfer from (CPh)Cr(CO)H to a trityl radical (tris( p- tert-butylphenyl)methyl radical). We have measured the rate constant and activation parameters for the direct reaction, and for each step in the catalytic process: H· transfer from (CPh)Cr(CO)H to TEMPO and H· transfer from TEMPO-H to the trityl radical. We have compared the measured rate constants with the differences in bond strength, and with the changes in the Global Electrophilicity Index determined with high accuracy for each radical using state of the art quantum chemical methods.

View Article and Find Full Text PDF

The 2,3-dimethylbutadiene complexes of Group 4 metals with constrained geometry (cg) ligands have been prepared and found to adopt a supine orientation with σ,π bonding. Treatment of cgTi(2,3-dimethylbutadiene) (1-Ti) with BuNC leads to the formation of a titana-aziridine (3) with a coordinated cyclopentenimine that arises from the formal [4+1] addition of the diene to the isonitrile. In contrast, the reactions of cgZr(2,3-dimethylbutadiene) (1-Zr) or cgHf(2,3-dimethylbutadiene) (1-Hf) with 2 equiv of BuNC or XyNC proceeded in a more sophisticated manner to yield unsymmetrical 2,5-diazametallacyclopentane derivatives (4, 6-Zr, and 6-Hf) or symmetrical 2,5-diazametallacyclopentene complexes (7-Zr and 7-Hf).

View Article and Find Full Text PDF