Publications by authors named "Thijs van Schaik"

Aim: Lynch syndrome (LS) is a dominantly inherited syndrome characterized by an increased risk for LS associated tumors such as colorectal cancer (CRC) and gastric cancer (GC). However, the clinical benefit of surveillance for GC remains unclear while it has already been recommended for CRC. This study aimed to elucidate the clinical features of GC in Japanese individuals with LS, and the risk of developing multiple GCs to build regional-tailored surveillance programs in LS patients with GC.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive and common type of malignant brain tumor diagnosed in adults. Preclinical immunocompetent mouse tumor models generated using mouse tumor cells play a pivotal role in testing the therapeutic efficacy of emerging immune-based therapies for GBMs. However, the clinical translatability of such studies is limited as mouse tumor lines do not fully recapitulate GBMs seen in inpatient settings.

View Article and Find Full Text PDF

Purpose: The success of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells illustrates the potential of this novel therapy for multiple myeloma. Nonetheless, broadening CAR T-cell therapy beyond BCMA requires inventive strategies as there are only a few multiple myeloma- or plasma cell-specific target antigens. We investigated the feasibility of achieving multiple myeloma specificity by dual-split CD38/CD138 CAR targeting, whereby the stimulatory and costimulatory signals for T-cell activation are split into two separate stimulatory (sCAR) and costimulatory CARs (cCAR).

View Article and Find Full Text PDF

The crosstalk between prostate cancer (PCa) cells and the tumor microenvironment plays a pivotal role in disease progression and metastasis and could provide novel opportunities for patient treatment. Macrophages are the most abundant immune cells in the prostate tumor microenvironment (TME) and are capable of killing tumor cells. To identify genes in the tumor cells that are critical for macrophage-mediated killing, we performed a genome-wide co-culture CRISPR screen and identified AR, PRKCD, and multiple components of the NF-κB pathway as hits, whose expression in the tumor cell are essential for being targeted and killed by macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created mouse models of PTEN-deficient melanoma brain metastasis, revealing these tumors are more immunosuppressive than primary melanomas.
  • * They developed a dual stem cell system that improves therapeutic efficacy by combining oncolytic herpes simplex virus treatment with immunomodulators, showing promise for treating brain and leptomeningeal metastases in models.
View Article and Find Full Text PDF

Encapsulated cell-based therapies for solid tumors have shown promising results in pre-clinical settings. However, the inability to culture encapsulated therapeutic cells prior to their transplantation has limited their translation into clinical settings. In this study, we created a wide variety of engineered therapeutic cells (ThC) loaded in micropore-forming gelatin methacryloyl (GelMA) hydrogel (CellDex) capsules that can be cultured in vitro prior to their transplantation in surgically debulked solid tumors.

View Article and Find Full Text PDF

The administration of inactivated tumor cells is known to induce a potent antitumor immune response; however, the efficacy of such an approach is limited by its inability to kill tumor cells before inducing the immune responses. Unlike inactivated tumor cells, living tumor cells have the ability to track and target tumors. Here, we developed a bifunctional whole cancer cell-based therapeutic with direct tumor killing and immunostimulatory roles.

View Article and Find Full Text PDF

Combinatory treatments using surgery, radiotherapy and/or chemotherapy together with immunotherapy have shown encouraging results for specific subsets of tumors, but a significant proportion of tumors remains unsusceptible. Some of these inconsistencies are thought to be the consequence of an immunosuppressive tumor microenvironment (TME) caused by therapy-induced tumor cell death (TCD). An increased understanding of the molecular mechanisms governing TCD has provided valuable insights in specific signaling cascades activated by treatment and the subsequent effects on the TME.

View Article and Find Full Text PDF