Publications by authors named "Thijs Vangeel"

Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars mainly due to the presence of lignin. By engineering plants to partially replace traditional lignin monomers with alternative ones, lignin degradability and extractability can be enhanced. Previously, the alternative monomer curcumin has been successfully produced and incorporated into lignified cell walls of Arabidopsis by the heterologous expression of () and ().

View Article and Find Full Text PDF

Herein, we present a full lignocellulose-to-chemicals valorization chain, wherein low molecular weight and highly functional lignin oligomers, obtained from reductive catalytic fractionation (RCF) of pine wood, were used to fully replace bisphenol A (BPA) for synthesizing bio-based epoxy resins.

View Article and Find Full Text PDF

Reductive catalytic fractionation (RCF) of lignocellulose is an emerging biorefinery scheme that combines biomass fractionation with lignin depolymerisation. Central to this scheme is the integration of heterogeneous catalysis, which overcomes the tendency of lignin to repolymerise. Ultimately, this leads to a low-M lignin oil comprising a handful of lignin-derived monophenolics in close-to-theoretical yield, as well as a carbohydrate pulp.

View Article and Find Full Text PDF

Lignin valorization has gained increasing attention over the past decade. Being the world's largest source of renewable aromatics, its valorization could pave the way towards more profitable and more sustainable lignocellulose biorefineries. Many lignin valorization strategies focus on the disassembly of lignin into aromatic monomers, which can serve as platform molecules for the chemical industry.

View Article and Find Full Text PDF