Entropies for alkane isomers longer than C are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott's tables which are obtained from a statistical mechanics-based correlation. Entropy production and heat input are calculated for the hydroisomerization of C isomers in various zeolites (FAU-, ITQ-29-, BEA-, MEL-, MFI-, MTW-, and MRE-types) at 500 K at chemical equilibrium.
View Article and Find Full Text PDFBoth CH4 hydrate accumulation and hydrate-based CO2 sequestration involve hydrate formation in mixed clay sediments. The development of realistic clay models and a nanoscale understanding of hydrate formation in mixed clay sediments are crucial for energy recovery and carbon sequestration. Here, we propose a novel molecular model of pseudo-hexagonal montmorillonite nanoparticles.
View Article and Find Full Text PDFA microscopic insight into hybrid CH physisorption-hydrate formation in halloysite nanotubes (HNTs) is vital for understanding the solidification storage of natural gas in the HNTs and developing energy storage technology. Herein, large-scale microsecond classical molecular dynamics simulations are conducted to investigate CH storage in the HNTs via the adsorption-hydration hybrid (AHH) method to reveal the effect of gas-water ratio. The simulation results indicate that the HNTs are excellent nanomaterials for CH storage via the adsorption-hydration hybrid method.
View Article and Find Full Text PDFHydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K).
View Article and Find Full Text PDFLinear regression (LR) is used to predict thermochemical properties of alkanes at temperatures (0-1000) K to study chemical reaction equilibria inside zeolites. The thermochemical properties of C until C isomers reported by Scott are used as training data sets in the LR model which is used to predict these properties for alkanes longer than C isomers. Second-order groups are used as independent variables which account for the interactions between the neighboring groups of atoms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
The confinement effect of porous materials on the thermodynamical equilibrium of the CO hydrogenation reaction presents a cost-effective alternative to transition metal catalysts. In metal-organic frameworks, the type of metal center has a greater impact on the enhancement of formic acid production than the scale of confinement resulting from the pore size. The M-MOF-74 series enables a comprehensive study of how different metal centers affect HCOOH production, minimizing the effect of pore size.
View Article and Find Full Text PDFVapor-Liquid Equilibria (VLE) of hydrogen (H2) and aqueous electrolyte (KOH and NaCl) solutions are central to numerous industrial applications such as alkaline electrolysis and underground hydrogen storage. Continuous fractional component Monte Carlo simulations are performed to compute the VLE of H2 and aqueous electrolyte solutions at 298-423 K, 10-400 bar, 0-8 mol KOH/kg water, and 0-6 mol NaCl/kg water. The densities and activities of water in aqueous KOH and NaCl solutions are accurately modeled (within 2% deviation from experiments) using the non-polarizable Madrid-2019 Na+/Cl- ion force fields for NaCl and the Madrid-Transport K+ and Delft Force Field of OH- for KOH, combined with the TIP4P/2005 water force field.
View Article and Find Full Text PDFH-CO mixtures find wide-ranging applications, including their growing significance as synthetic fuels in the transportation industry, relevance in capture technologies for carbon capture and storage, occurrence in subsurface storage of hydrogen, and hydrogenation of carbon dioxide to form hydrocarbons and alcohols. Here, we focus on the thermodynamic properties of H-CO mixtures pertinent to underground hydrogen storage in depleted gas reservoirs. Molecular dynamics simulations are used to compute mutual (Fick) diffusivities for a wide range of pressures (5 to 50 MPa), temperatures (323.
View Article and Find Full Text PDFWe study important aspects of shape selectivity effects of zeolites for hydroisomerization of linear alkanes, which produces a myriad of isomers, particularly for long chain hydrocarbons. To investigate the conditions for achieving an optimal yield of branched hydrocarbons, it is important to understand the role of chemical equilibrium in these reversible reactions. We conduct an extensive analysis of shape selectivity effects of different zeolites for the hydroisomerization of C7 and C8 isomers at chemical reaction equilibrium conditions.
View Article and Find Full Text PDFMolecular-based equations of state for describing the thermodynamics of chain molecules are often based on mean-field like arguments that reduce the problem of describing the interactions between chains to a simpler one involving only nonbonded monomers. While for dense liquids such arguments are known to work well, at low density they are typically less appropriate due to an incomplete description of the effect of chain connectivity on the local environment of the chains' monomer segments. To address this issue, we develop three semi-empirical approaches that significantly improve the thermodynamic description of chain molecules at low density.
View Article and Find Full Text PDFFocused ultrasound has experimentally been found to enhance the diffusion of nanoparticles; our aim with this work is to study this effect closer using both experiments and non-equilibrium molecular dynamics. Measurements from single particle tracking of 40 nm polystyrene nanoparticles in an agarose hydrogel with and without focused ultrasound are presented and compared with a previous experimental study using 100 nm polystyrene nanoparticles. In both cases, we observed an increase in the mean square displacement during focused ultrasound treatment.
View Article and Find Full Text PDFNon-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to describe the interactions in the liquid phase and (2) an additional Effective Charge Surface (ECS) is used to compute free energies at zero additional computational expense. The ECS is obtained using a single temperature-independent charge scaling parameter per species.
View Article and Find Full Text PDFThermodynamic factors for diffusion connect the Fick and Maxwell-Stefan diffusion coefficients used to quantify mass transfer. Activity coefficient models or equations of state can be fitted to experimental or simulation data, from which thermodynamic factors can be obtained by differentiation. The accuracy of thermodynamic factors determined using indirect routes is dictated by the specific choice of an activity coefficient model or an equation of state.
View Article and Find Full Text PDFIn this work, we computed electrical conductivities under ambient conditions of aqueous NaCl and KCl solutions by using the Einstein-Helfand equation. Common force fields (charge = ±1 ) do not reproduce the experimental values of electrical conductivities, viscosities, and diffusion coefficients. Recently, we proposed the idea of using different charges to describe the potential energy surface (PES) and the dipole moment surface (DMS).
View Article and Find Full Text PDFContinuous Fractional Component Monte Carlo (CFCMC) and molecular dynamics (MD) simulations are performed to calculate the solubilities and self-diffusion coefficients of four light -alkanes (methane, ethane, propane, and -butane) in aqueous NaCl solutions as well as the thermodynamic properties of their corresponding hydrate crystals. Correction factors to the Lorentz-Berthelot combining rules for alkane groups (CH) and water are optimized ( = 1.04) by fitting excess chemical potentials to experimental data at 1 bar and 298.
View Article and Find Full Text PDFWe developed an open-source chemical reaction equilibrium solver in Python (CASpy, https://github.com/omoultosEthTuDelft/CASpy) to compute the concentration of species in any reactive liquid-phase absorption system. We derived an expression for a mole fraction-based equilibrium constant as a function of excess chemical potential, standard ideal gas chemical potential, temperature, and volume.
View Article and Find Full Text PDFVapor-liquid equilibrium (VLE) data for the binary systems tetrahydrofuran (THF) + acetic acid (AA) and THF + trichloroethylene (TCE) were measured under isobaric conditions using an ebulliometer. The boiling temperatures for the systems (THF + AA/THF + TCE) are reported for 13/15 compositions and five/six different pressures ranging from 50.2/60.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2022
There is a growing interest in the development of routes to produce formic acid from CO, such as the electrochemical reduction of CO to formic acid. The solubility of CO in the electrolyte influences the production rate of formic acid. Here, the dependence of the CO solubility in aqueous HCOOH solutions with electrolytes on the composition and the NaCl concentration was studied by Continuous Fractional Component Monte Carlo simulations at 298.
View Article and Find Full Text PDFThe thermophysical properties of aqueous electrolyte solutions are of interest for applications such as water electrolyzers and fuel cells. Molecular dynamics (MD) and continuous fractional component Monte Carlo (CFCMC) simulations are used to calculate densities, transport properties (i.e.
View Article and Find Full Text PDFWe performed H-cell and flow cell experiments to study the electrochemical reduction of CO to oxalic acid (OA) on a lead (Pb) cathode in various nonaqueous solvents. The effects of anolyte, catholyte, supporting electrolyte, temperature, water content, and cathode potential on the Faraday efficiency (FE), current density (CD), and product concentration were investigated. We show that a high FE for OA can be achieved (up to 90%) at a cathode potential of -2.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
July 2022
The electrochemical CO reduction reaction (CORR) is important for a sustainable future. Key insights into the reaction pathways have been obtained by density functional theory (DFT) analysis, but so far, DFT has been unable to give an overall understanding of selectivity trends without important caveats. We show that an unconsidered parameter in DFT models of electrocatalysts-the surface coverage of reacting species-is crucial for understanding the CORR selectivities for different surfaces.
View Article and Find Full Text PDFOne of the important parameters in water management of proton exchange membranes is the electro-osmotic drag (EOD) coefficient of water. The value of the EOD coefficient is difficult to justify, and available literature data on this for Nafion membranes show scattering from in experiments and simulations. Here, we use a classical all-atom model to compute the EOD coefficient and thermodynamic properties of water from molecular dynamics simulations for temperatures between 330 and 420 K, and for different water contents between λ = 5 and λ = 20.
View Article and Find Full Text PDFRecently, deep eutectic solvents (DES) have been considered as possible electrolytes for the electrochemical reduction of CO to value-added products such as formic and oxalic acids. The applicability of pure DES as electrolytes is hindered by high viscosities. Mixtures of DES with organic solvents can be a promising way of designing superior electrolytes by exploiting the advantages of each solvent type.
View Article and Find Full Text PDF