Publications by authors named "Thijs Defraeye"

Introduction: Patients with advanced cancer frequently suffer from chronic, severe disabling pain. Opioids such as morphine and fentanyl are commonly used to manage this pain. Transdermal drug delivery systems are important technologies for administering drugs in a non-invasive, continuous and controlled manner.

View Article and Find Full Text PDF

Transdermal drug delivery is suitable for low-molecular-weight drugs with specific lipophilicity, like fentanyl, which is widely used for cancer-induced pain management. However, fentanyl's transdermal therapy displays high intra-individual variability. Factors like skin characteristics at application sites and ambient temperature contribute to this variation.

View Article and Find Full Text PDF

The postharvest end-quality of citrus is significantly impacted by pre-harvest factors such as weather, which varies among growing regions. Despite the importance of these factors, the influence of regional weather variations, such as variations in temperature, humidity, wind, vapor pressure deficit (VPD), and solar radiation on postharvest citrus quality, is largely unknown. This study aims to quantify this impact through a physics-driven digital replica of the entire value chain of Valencia oranges, from orchards in South Africa to retail in Europe.

View Article and Find Full Text PDF

Fentanyl transdermal patches are widely implemented for cancer-induced pain treatment due to the high potency of fentanyl and gradual drug release. However, transdermal fentanyl up-titration for opioid-naïve patients is difficult, which is why opioid treatment is often started with oral/iv morphine. Based on the daily dose of morphine, the initial dose of the fentanyl patch is decided upon.

View Article and Find Full Text PDF

Supply chains of fresh fruit must maintain a very narrow window of hygrothermal conditions after harvest. Any excursions outside this range can markedly lower the consumer acceptability of the fruit. However, the loss in fruit quality and marketability largely remains invisible to stakeholders throughout the supply chain.

View Article and Find Full Text PDF

Fentanyl transdermal therapy is a suitable treatment for moderate-to-severe cancer-related pain. The inter-individual variability of the patients leads to different therapy responses. This study aims to determine the effect of physiological features on the achieved pain relief.

View Article and Find Full Text PDF

The accessibility of open-source data on fresh food supply chains provides key stakeholders from the public and private sectors with insights for better decision-making to drive food loss reduction. Nigeria has a fair amount of open-source agricultural and climate-related data. However, most of these datasets are not readily accessible.

View Article and Find Full Text PDF

SARS-CoV-2 spreads droplets, aerosols, and smear infection. From the beginning of the COVID-19 pandemic, using a facemask in different locations was recommended to slow down the spread of the virus. To evaluate facemasks' performance, masks' filtration efficiency is tested for a range of particle sizes.

View Article and Find Full Text PDF

Transdermal fentanyl patches are an effective alternative to the sustained release of oral morphine for chronic pain management. Due to the narrow therapeutic range of fentanyl, the concentration of fentanyl in the blood needs to be carefully monitored. Only then can effective pain relief be achieved while avoiding adverse effects such as respiratory depression.

View Article and Find Full Text PDF

Electrohydrodynamic (EHD) drying is a promising technology to better preserve the nutritional content and sensory appeal of dried fruits and vegetables. To successfully scale up this technology, we need to rethink the current EHD dryer designs. There is also a significant potential to further enhance the nutritional content and sensory quality of the dried products by optimizing EHD process parameters.

View Article and Find Full Text PDF

Transdermal drug delivery systems are a key technology to administer drugs with a high first-pass effect in a non-invasive and controlled way. Physics-based modeling and simulation are on their way to become a cornerstone in the engineering of these healthcare devices since it provides a unique complementarity to experimental data and additional insights. Simulations enable to virtually probe the drug transport inside the skin at each point in time and space.

View Article and Find Full Text PDF

Transdermal drug delivery is a key technology for administering drugs. However, most devices are "one-size-fits-all", even though drug diffusion through the skin varies significantly from person-to-person. For next-generation devices, personalization for optimal drug release would benefit from an augmented insight into the drug release and percutaneous uptake kinetics.

View Article and Find Full Text PDF

Convective drying of fruits leads to microstructural changes within the material as a result of moisture removal. In this study, an upscaling approach is developed to understand and identify the relation between the drying kinetics and the resulting microstructural changes of apple fruit, including shrinkage of cells without membrane breakage (free shrinkage) and with membrane breakage (lysis). First, the effective permeability is computed from a microscale model as a function of the water potential.

View Article and Find Full Text PDF

Microfluidic wet spinning has gained increasing interest in recent years as an alternative to conventional wet spinning by offering higher control in fiber morphology and a gateway for the development of multi-material fibers. Conventionally, microfluidic chips used to create such fibers are fabricated by soft lithography, a method that requires both time and investment in necessary cleanroom facilities. Recently, additive manufacturing techniques were investigated for rapid and cost-efficient prototyping.

View Article and Find Full Text PDF

A good understanding of the microstructural changes due to dehydration is critical to optimize fruit drying processes. By using X-ray micro-computed tomography, we quantified the changes in porosity, pore diameter, cell sphericity, cell diameter and cell elongation of apple parenchyma tissue during multiple convective drying scenarios: natural convection (air speed = 0.05 m s), forced convection (air speed = 0.

View Article and Find Full Text PDF

Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation.

View Article and Find Full Text PDF

Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress. The leaf hydraulic architecture is a key determinant of plant sap transport and plant-atmosphere exchange processes. Non-destructive imaging with neutrons shows large potential for unveiling the complex internal features of the venation network and the transport therein.

View Article and Find Full Text PDF
Article Synopsis
  • This study develops a comprehensive algorithm that models both symmetric and asymmetric cell division, accounting for different growth patterns, and allows for real-time simulation of cell wall growth alongside mechanical changes.
  • Cells are treated as thin-walled structures under tension from turgor pressure, with their expansion governed by mechanical principles, resulting in new differential equations to manage growth and cell division readiness.
  • The successful implementation of the algorithm emphasizes the role of ellipse-fitting in representing biological variability, moving beyond earlier models by integrating the dynamic growth of the cell wall directly with cellular mechanics.
View Article and Find Full Text PDF

Background And Aims: Leaf transpiration is a key parameter for understanding land surface-climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2-5%).

View Article and Find Full Text PDF

We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples.

View Article and Find Full Text PDF

In team pursuit, the drag of a group of cyclists riding in a pace line is dependent on several factors, such as anthropometric characteristics (stature) and position of each cyclist as well as the sequence in which they ride. To increase insight in drag reduction mechanisms, the aerodynamic drag of four cyclists riding in a pace line was investigated, using four different cyclists, and for four different sequences. In addition, each sequence was evaluated for two arm spacings.

View Article and Find Full Text PDF

This study aims at investigating drag and convective heat transfer for cyclists at a high spatial resolution. Such an increased spatial resolution, when combined with flow-field data, can increase insight in drag reduction mechanisms and in the thermo-physiological response of cyclists related to heat stress and hygrothermal performance of clothing. Computational fluid dynamics (steady Reynolds-averaged Navier-Stokes) is used to evaluate the drag and convective heat transfer of 19 body segments of a cyclist for three different cyclist positions.

View Article and Find Full Text PDF

This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.

View Article and Find Full Text PDF

Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies.

View Article and Find Full Text PDF