Publications by authors named "Thiet M Vu"

Antibiotic-free approaches are more important than ever to address the rapidly growing problem of the antibiotic resistance crisis. The photolysis of the bacterial virulence factor staphyloxanthin using blue light at 460 nm (BL460 nm) has been found to effectively attenuate to chemical and physical agents. However, phototherapy using BL640 nm still needs to be investigated in detail for its safety in eradicating in vitro and in vivo.

View Article and Find Full Text PDF

We recently discovered that Mfsd2b, which is the S1P exporter found in blood cells. Here, we report that Mfsd2b is critical for the release of all S1P species in both resting and activated platelets. We show that resting platelets store S1P in the cytoplasm.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a potent lipid mediator that exerts its activity via activation of five different G protein-coupled receptors, designated as S1P1-5. This potent lipid mediator is synthesized from the sphingosine precursor by two sphingosine kinases (SphK1 and 2) and must be exported to exert extracellular signaling functions. We recently identified Mfsd2b as the S1P transporter in the hematopoietic system.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P), a potent signalling lipid secreted by red blood cells and platelets, plays numerous biologically significant roles. However, the identity of its long-sought exporter is enigmatic. Here we show that the major facilitator superfamily transporter 2b (Mfsd2b), an orphan transporter, is essential for S1P export from red blood cells and platelets.

View Article and Find Full Text PDF

Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations.

View Article and Find Full Text PDF

In mammals and plants, parental genomic imprinting restricts the expression of specific loci to one parental allele. Imprinting in mammals relies on sex-dependent de novo deposition of DNA methylation during gametogenesis but a comparable mechanism was not shown in plants. Rather, paternal silencing by the maintenance DNA methyltransferase 1 (MET1) and maternal activation by the DNA demethylase DEMETER (DME) cause maternal expression.

View Article and Find Full Text PDF