Fungal and bacterial pathogens causing lung infections often use lectins to mediate adhesion to glycoconjugates at the surface of host tissues. Given the rapid emergence of resistance to the treatments in current use, β-propeller lectins such as FleA from , SapL1 from and BambL from have become appealing targets for the design of anti-adhesive agents. In search of novel and cheap anti-infectious agents, we synthesized multivalent compounds that can display up to 20 units of fucose, the natural ligand.
View Article and Find Full Text PDFCell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites.
View Article and Find Full Text PDFThe size of polymeric micelles crucially affects their tumor accumulation, penetration and antitumor efficacy. In the present study, micelles were formed based on amphiphilic poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) via the solvent extraction method, and factors impacting micelle size were systematically studied, including the molecular weight of the polymers, homopolymer content, and processing methods (i.e.
View Article and Find Full Text PDFSubunit vaccines often contain colloidal aluminum salt-based adjuvants to activate the innate immune system. These aluminum salts consist of micrometer-sized aggregates. It is well-known that particle size affects the adjuvant effect of particulate adjuvants.
View Article and Find Full Text PDFWe present the synthesis of colloidal silica particles with new shapes by manipulating the growth conditions of rods that are growing from polyvinylpyrrolidone-loaded water-rich droplets containing ammonia and ethanol. The silica rods grow by ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The lengthwise growth of these silica rods gives us the opportunity to change the conditions at any time during the reaction.
View Article and Find Full Text PDFLow pH-induced ligand release and receptor recycling are important steps for endocytosis. The transmembrane protein sortilin, a β-propeller containing endocytosis receptor, internalizes a diverse set of ligands with roles in cell differentiation and homeostasis. The molecular mechanisms of pH-mediated ligand release and sortilin recycling are unresolved.
View Article and Find Full Text PDFMyelin-associated glycoprotein (MAG) is a myelin-expressed cell-adhesion and bi-directional signalling molecule. MAG maintains the myelin-axon spacing by interacting with specific neuronal glycolipids (gangliosides), inhibits axon regeneration and controls myelin formation. The mechanisms underlying MAG adhesion and signalling are unresolved.
View Article and Find Full Text PDFLuminescent Ag clusters are prepared with lipoic acid (LA) as the ligand. Using a combination of mass spectrometry, optical spectroscopy and analytical ultracentrifugation, the clusters are found to be highly monodisperse with mass 5.6 kDa.
View Article and Find Full Text PDFThe five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface. Such simultaneous binding arising from the toxins multivalency is believed to enhance its affinity.
View Article and Find Full Text PDFMultivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands.
View Article and Find Full Text PDFOlfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2015
The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are similar, confirming that the micropores in the silica shell of the hollow cubes do not contribute to the permeability. From the Brinkman screening length √k of ∼16 nm, we infer that the relevant pores are indeed intercube pores.
View Article and Find Full Text PDFViruses are among the simplest biological systems and are highly effective vehicles for the delivery of genetic material into susceptible host cells. Artificial viruses can be used as model systems for providing insights into natural viruses and can be considered a testing ground for developing artificial life. Moreover, they are used in biomedical and biotechnological applications, such as targeted delivery of nucleic acids for gene therapy and as scaffolds in material science.
View Article and Find Full Text PDFThe first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van 't Hoff's law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient.
View Article and Find Full Text PDFAnalytical centrifugation is used for the first time to measure sedimentation equilibrium concentration profiles of a ferrofluid, a concentrated colloidal dispersion of strongly absorbing magnetic nanoparticles. To keep the optical absorbance from becoming too strong, the optical path length is restricted to 50 μm by placing the dispersion in a flat glass capillary. The concentration profile is kept from becoming too steep, despite the relatively high buoyant mass of the nanoparticles, by making novel use of a low-velocity analytical centrifuge that was not designed to measure equilibrium profiles.
View Article and Find Full Text PDFWe demonstrate the suitability of polarization microscopy to study the recently discovered (parallel) nematic-(perpendicular) nematic phase separation. This novel type of phase transition is induced by applying an external magnetic field to a nematic liquid crystal of boardlike colloidal goethite and is due to an interplay between the intrinsic magnetic properties of goethite and the collective effect of liquid crystal formation. It is shown that the intense ochre colour of goethite does not preclude the use of polarization microscopy and interference colours, and that dichroism can give valuable qualitative information on the nature of the phases, their anchoring and their sedimentation and order parameter profiles.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2010
The liquid crystalline phase behavior of sterically-stabilized goethite particles in toluene was studied using small-angle X-ray scattering. The results were compared with those from charged particles in water, with and without magnetic field: similarly rich phase behavior was found. Furthermore, the special magnetic properties were retained after coating the particles with amino-functionalized polyisobutylene chains.
View Article and Find Full Text PDFBiaxial nematic and biaxial smectic phases were found in a colloidal model system of goethite (alpha-FeOOH) particles with a simple boardlike shape and short-range repulsive interaction. The macroscopic domains were oriented by a magnetic field and their structure was revealed by small angle x-ray scattering. In accordance with theoretical predictions, biaxiality appears in a system with particles that have a shape almost exactly in between rodlike and platelike.
View Article and Find Full Text PDFUsing high-resolution small-angle X-ray scattering, we observed a new type of the columnar phase with a simple rectangular (R(S)) structure in colloidal goethite dispersions. Furthermore, it displays a martensitic transition into the usual centered rectangular (R(C)) structure in an external magnetic field. The findings are rationalized in terms of entropic effects within a simple cell model.
View Article and Find Full Text PDFThe effect of fractionation on the phase behavior of colloidal goethite dispersions with different polydispersities (17%, 35%, and 55% in length) has been studied by small angle x-ray scattering and transmission electron microscopy. All systems show at least nematic and smectic phases. The occurrence of the latter phase at such a high polydispersity is remarkable.
View Article and Find Full Text PDF