Publications by authors named "Thies Klussendorf"

During adult neurogenesis, newly formed olfactory bulb (OB) interneurons migrate radially to integrate into specific layers of the OB Despite the importance of this process, the intracellular mechanisms that regulate radial migration remain poorly understood. Here, we find that microRNA (miRNA) let-7 regulates radial migration by modulating autophagy in new-born neurons. Using Argonaute2 immunoprecipitation, we performed global profiling of miRNAs in adult-born OB neurons and identified let-7 as a highly abundant miRNA family.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are key players in the regulation of neuronal processes by targeting a large network of target messenger RNAs (mRNAs). However, the identity and function of mRNAs targeted by miRNAs in specific cells of the brain are largely unknown. Here, we established an adeno-associated viral vector (AAV)-based neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high-throughput sequencing to analyse the regulatory role of miRNAs in mouse hippocampal neurons.

View Article and Find Full Text PDF

New neurons, originating from the subventricular zone, are continuously integrating into neuronal circuitry in the olfactory bulb (OB). Using a transgenic sensor mouse, we found that adult-born OB interneurons express microRNA-125 (miR-125), whereas the pre-existing developmentally generated OB interneurons represent a unique population of cells in the adult brain, without miR-125 activity. Stable inhibition of miR-125 in newborn OB neurons resulted in enhanced dendritic morphogenesis, as well as in increased synaptic activation in response to odour sensory stimuli.

View Article and Find Full Text PDF