Background: MR-based methods for attenuation correction (AC) in PET/MRI either neglect attenuation of bone, or use MR-signal derived information about bone, which leads to a bias in quantification of tracer uptake in PET. In a previous study, we presented a PET/MRI specific MR coil with an integrated transmission source (TX) system allowing for direct measurement of attenuation. In phantom measurements, this system successfully reproduced the linear attenuation coefficient of water.
View Article and Find Full Text PDFImage-guided high-intensity focused ultrasound (HIFU) has been increasingly used in medicine over the past few decades, and several systems for such have become commercially available. HIFU has passed regulatory approval around the world for the ablation of various solid tumors, the treatment of neurologic diseases, and the palliative management of bone metastases. The mechanical and thermal effects of focused ultrasound provide a possibility for histotripsy, supportive radiation therapy, and targeted drug delivery.
View Article and Find Full Text PDFQ J Nucl Med Mol Imaging
March 2021
Multimodality imaging has emerged from a vision thirty years ago to routine clinical use today. Positron emission tomography (PET)/magnetic resonance imaging (MRI) is still relatively new in this arena and particularly suitable for clinical research and technical development. PET/MRI-guidance for interventions opens up opportunities for novel treatments but at the same time demands certain technical and organizational requirements to be fulfilled.
View Article and Find Full Text PDFPurpose: Post-mortem and in-vivo MRI data suggest an accumulation of iron in the brain of Alzheimer's disease (AD) patients. The majority of studies in clinically diagnosed AD patients found an increase of iron-sensitive MRI signals in the putamen. As the clinical diagnosis shows only a moderate sensitivity, Aβ-PET was used to further stratify patients with the clinical diagnosis of AD.
View Article and Find Full Text PDFBackground: The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) (PET-MRI) is a unique hybrid imaging modality mainly used in oncology and neurology. The MRI-based attenuation correction (MRAC) is crucial for correct quantification of PET data. A suitable phantom to validate quantitative results in PET-MRI is currently missing.
View Article and Find Full Text PDFBackground: Current research diagnostic criteria for Alzheimer's disease (AD) and mild cognitive impairment (MCI) due to AD include biomarkers to supplement clinical testing. Recently, we demonstrated that dual time-point [18F]FBB PET is able to deliver both blood flow and amyloid-β (Aβ) load surrogates.
Objective: The aim of this study was to investigate whether these surrogates can be utilized as AD biomarkers.
Background: PET imaging is an established technique to detect cerebral amyloid-β (Aβ) plaques in vivo. Some preclinical and postmortem data report an accumulation of redox-active iron near Aβ plaques. Quantitative susceptibility mapping (QSM) at high-field MRI enables iron deposits to be depicted with high spatial resolution.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2016
Purpose: Established Alzheimer's disease (AD) biomarker concepts classify into amyloid pathology and neuronal injury biomarkers, while recent alternative concepts classify into diagnostic and progression AD biomarkers. However, combined amyloid positron emission tomography/magnetic resonance imaging (PET/MRI) offers the chance to obtain both biomarker category read-outs within one imaging session, with increased patient as well as referrer convenience. The aim of this pilot study was to investigate this matter for the first time.
View Article and Find Full Text PDFBackground: Obtaining the arterial input function (AIF) from image data in dynamic positron emission tomography (PET) examinations is a non-invasive alternative to arterial blood sampling. In simultaneous PET/magnetic resonance imaging (PET/MRI), high-resolution MRI angiographies can be used to define major arteries for correction of partial-volume effects (PVE) and point spread function (PSF) response in the PET data. The present study describes a fully automated method to obtain the image-derived input function (IDIF) in PET/MRI.
View Article and Find Full Text PDFProspective studies on magnetic resonance imaging (MRI)-guided systemic thrombolysis >4.5 hours after stroke onset did not reach their primary end points. It was discussed and observed in post hoc data re-assessment that this was partly because of limited MRI accuracy to measure critical hypoperfusion.
View Article and Find Full Text PDFThis study explores the possibility of using simultaneous positron emission tomography--magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI.
View Article and Find Full Text PDFUse of PET/MR in children has not previously been reported, to the best of our knowledge. Children with systemic malignancies may benefit from the reduced radiation exposure offered by PET/MR. We report our initial experience with PET/MR hybrid imaging and our current established sequence protocol after 21 PET/MR studies in 15 children with multifocal malignant diseases.
View Article and Find Full Text PDFThe implementation of hybrid imaging systems requires thorough and anticipatory planning at local and regional levels. For installation of combined positron emission and magnetic resonance imaging systems (PET/MRI), a number of physical and constructional provisions concerning shielding of electromagnetic fields (RF- and high-field) as well as handling of radionuclides have to be met, the latter of which includes shielding for the emitted 511 keV gamma rays. Based on our experiences with a SIEMENS Biograph mMR system, a step-by-step approach is required to allow a trouble-free installation.
View Article and Find Full Text PDFPeriodically rotated overlapping parallel lines with enhanced reconstruction-echo-planar imaging (PROPELLER-EPI) is a multishot technique that samples k-space by acquisition of narrow blades, which are subsequently rotated until the entire k-space is filled. It has the unique advantage that the center of k-space, and thus the area containing the majority of functional MRI signal changes, is sampled with each shot. This continuous refreshing of the k-space center by each acquired blade enables not only sliding-window but also keyhole reconstruction.
View Article and Find Full Text PDFEcho planar imaging (EPI) in combination with PROPELLER allows high-resolution diffusion-weighted imaging. In this study, the image quality of short-axis and long-axis PROPELLER was compared and optimized using phantom and in vivo data. Furthermore, diffusion-weighted measurements using both sequences were compared with those of a reference sequence.
View Article and Find Full Text PDFThe interaction ('cross terms') between diffusion-weighting gradients and susceptibility-induced background gradient fields around vessels has an impact on apparent diffusion coefficient (ADC) measurements and diffusion-weighted functional magnetic resonance imaging (DFMRI) experiments. Monte-Carlo (MC) simulations numerically integrating the Bloch equations for a large number of random walks in a vascular model were used to investigate to what extent such interactions would influence the extravascular signal change as well as the ADC change observed in DFMRI experiments. The vascular model consists of a set of independent, randomly oriented, infinite cylinders whose internal magnetic susceptibility varies as the state changes between rest and activation.
View Article and Find Full Text PDFMeasuring the morphology of the cerebral microvasculature by vessel-size imaging (VSI) is a promising approach for clinical applications, such as the characterization of tumor angiogenesis and stroke. Despite the great potential of VSI, this method has not yet found widespread use in practice due to the lack of experience in testing it on healthy humans. Since this limitation derives mainly from the need for an invasive injection of a contrast agent, this work explores the possibility to employ instead the easily accessible blood oxygenation level dependent (BOLD) effect for VSI of the venous microstructure.
View Article and Find Full Text PDFDetecting neuronal activity by functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) contrast can be problematic since the contrast reflects changes in blood oxygenation which can be distant from the activated site, e.g. in the presence of large veins.
View Article and Find Full Text PDFEcho-planar imaging (EPI) is the standard technique for dynamic susceptibility-contrast (DSC) perfusion MRI. However, EPI suffers from well-known geometric distortions, which can be reduced by increasing the k-space phase velocity. Moreover, the long echo times (TEs) used in DSC lead to signal saturation of the arterial input signal, and hence to severe quantitation errors in the hemodynamic information.
View Article and Find Full Text PDFSeveral obstacles usually confound a straightforward perfusion analysis using dynamic-susceptibility contrast-based magnetic resonance imaging (DSC-MRI). In this work, it became possible to eliminate some of these sources of error by combining a multiple gradient-echo technique with parallel imaging (PI): first, the large dynamic range of tracer concentrations could be covered satisfactorily with multiple echo times (TE) which would otherwise result in overestimation of image magnitude in the presence of noise. Second, any bias from T(1) relaxation could be avoided by fitting to the signal magnitude of multiple TEs.
View Article and Find Full Text PDFThe process of image formation in magnetic resonance imaging (MRI) can be simulated by means of an iterative solution of Bloch-Torrey equations. This is a useful accessory to analyze the influence of sample properties, sequence parameters and hardware specifications on the MRI signal. In this paper, a computer algorithm is presented which is based on calculating partial derivatives of the magnetization vector.
View Article and Find Full Text PDFBy combining flow-dephased and flow-rephased diffusion weighting with blood oxygenation level dependent functional magnetic resonance imaging, it is possible to study flow dynamics in the venous network of the human brain. Thereby, ballistic flow, which conserves direction and velocity during echo time, is separated from diffusive flow with many changes in direction and velocity. By using this technique with very low diffusion/flow weighting, the mean velocity of ballistic flow was quantified in this study.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) based on the selection of intermolecular double-quantum coherences (iDQC) was performed with a standard birdcage coil at 3 T in a group of normal human volunteers. Suppression of spurious signal contributions from unwanted coherence-transfer pathways was achieved by combining a two-step phase cycle and a long repetition time of 5 s. A gradient-recalled echo iDQC sequence (echo time, T(E) = 80 ms) yielded robust activation with a visual paradigm.
View Article and Find Full Text PDFIn a recent series of studies (see, for example, Stroman et al. Magn Reson Imag 2001; 19:827-831), an increase of water proton density has been suggested to correlate with neuronal activity. Owing to the significant implications of such a mechanism for other functional experiments, the functional signal changes in humans at very short echo times were re-examined by spin-echo EPI at 3 T.
View Article and Find Full Text PDF