The annual "Antibody Industrial Symposium", co-organized by LabEx MAbImprove and MabDesign, held its 10th anniversary edition in Montpellier, France, on June 28-29, 2022. The meeting focused on new results and concepts in antibody engineering (naked, mono- or multi-specific, conjugated to drugs or radioelements) and also on new cell-based therapies, such as chimeric antigenic receptor (CAR)-T cells. The symposium, which brought together scientists from academia and industry, also addressed issues concerning the production of these molecules and cells, and the necessary steps to ensure a strong intellectual property protection of these new molecules and approaches.
View Article and Find Full Text PDFMed Sci (Paris)
December 2019
Over the past ten years, an increased knowledge of tumor biology and immunology allowed the design and development of novel therapeutic antibody and protein scaffold formats, where bispecific antibodies (Abs) play a major role. The latter molecules can (1) bring novel pharmacological properties through the co-engagement of two targets, (2) increase the safety profile as compared to a combination of two antibodies thanks to a targeted relocation to the tumor and (3) reduce development and manufacturing costs associated with single drug product. This review analyzes the different bispecific antibodies and scaffolds described in the field of immuno-oncology, their structure and major pharmacological and physico-chemical properties.
View Article and Find Full Text PDFThe 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6-10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs.
View Article and Find Full Text PDFThe annual European Antibody Congress (EAC) has traditionally been the key event for updates on critical scientific advances in the antibody field, and 2013 was no exception. Organized by Terrapinn, the well-attended meeting featured presentations on considerations for developing antibodies and antibody-like therapeutics, with separate tracks for antibody-drug conjugates, naked antibodies, and multispecific antibodies or protein scaffolds. The overall focus of the EAC was current approaches to enhance the functionality of therapeutic antibodies or other targeted proteins, with the ultimate goal being improvement of the safety and efficacy of the molecules as treatments for cancer, immune-mediated disorders and other diseases.
View Article and Find Full Text PDFThe 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds.
View Article and Find Full Text PDFRecent advances in combinatorial protein engineering have made it possible to develop immunoglobulin (Ig)-based and non-Ig protein scaffolds that can potentially substitute for most whole antibody-associated properties and currently translate into biologicals with drug-like properties. During the past 10 years, the most validated scaffolds have reached the clinical development phase and, recently, one of them [Kalbitor(®) (Dyax)] has made it to the market, making these alternative scaffold proteins viable drug candidates in a post-antibody landscape. Interestingly, several scaffolds include an immune-active component as part of their therapeutic mode of action, which yielded spectacular clinical efficacy in some hematological malignancies.
View Article and Find Full Text PDFThe 22nd Annual Antibody Engineering and 9th Annual Antibody Therapeutics international conferences, and the 2011 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-8, 2011 in San Diego, CA. The meeting drew ~800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a preview to the main events, a pre-conference workshop held on December 4, 2011 focused on antibodies as probes of structure.
View Article and Find Full Text PDFThe 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC. As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) and derivatives are currently the fastest growing class of therapeutic molecules. More than 30 G-type immunoglobulins (IgG) and related agents have been approved over the past 25 years mainly for cancers and inflammatory diseases. In oncology, mAbs are often combined with cytotoxic drugs to enhance their therapeutic efficacy.
View Article and Find Full Text PDFAntibodies and related products are the fastest growing class of therapeutic agents. By analysing the regulatory approvals of IgG-based biotherapeutic agents in the past 10 years, we can gain insights into the successful strategies used by pharmaceutical companies so far to bring innovative drugs to the market. Many challenges will have to be faced in the next decade to bring more efficient and affordable antibody-based drugs to the clinic.
View Article and Find Full Text PDFThe symposium on Antibodies as Drugs, organized by Keystone Symposia and chaired by J. Marks, (University of California Los Angeles, USA), E.S.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2010
Importance Of The Field: Therapeutic properties of many glycoproteins strongly depend on the composition of their glycans. Most of the current approved glycoproteins are produced in mammalian cell lines, which yield mixture of different glycoforms close to the human one but not fully identical. Glyco-engineering is being developed as a method to control the composition of carbohydrates.
View Article and Find Full Text PDFRecent advances in combinatorial protein engineering have made it possible to develop non-Ig protein scaffolds that can potentially substitute for most whole antibody-associated properties. These protein scaffolds display most of the binding properties associated with the variable domain of antibodies. In theory, many different natural human protein backbones are suitable to be used as recombinant templates for engineering ; in practice however, only a few have yielded the necessary properties to be translated into << druggable biologicals >>.
View Article and Find Full Text PDFMonoclonal antibodies (mAb) and related-products represent the fastest growing class of therapeutics in the biotechnological and pharmaceutical industry. In just as short as 20 years, more than 30 immunoglobulins (IgG) and derivatives have been approved in a wide range of indications (oncology, inflammation and auto-immunity, transplantation, angioplasty, hematology, ophthalmology, viral infections, allergy). The mAb structure toolbox contains mouse, chimeric, humanized and human antibodies from different isotypes (IgG1, 2 and 4), as well as IgG-related products (immunoconjugates, radio-immunoconjugates, Fab fragments, Fc-fusion proteins and peptides, bispecifics).
View Article and Find Full Text PDFMonoclonal antibodies (MAbs) are the fastest growing class of human pharmaceuticals. More than 20 MAbs have been approved and several hundreds are in clinical trials in various therapeutic indications including oncology, inflammatory diseases, organ transplantation, cardiology, viral infection, allergy, and tissue growth and repair. Most of the current therapeutic antibodies are humanized or human Immunoglobulins (IgGs) and are produced as recombinant glycoproteins in eukaryotic cells.
View Article and Find Full Text PDFPeptides are essential tools for discovery and pre-clinical and pharmaceutical development of viral and cancer vaccines ('active immunotherapies') as well as for therapeutic antibodies ('passive immunotherapies'). They help to trigger and analyze immune responses at a molecular level (B-cell, T-helper and CTL epitopes). They contribute largely to the design of new vaccine candidates and to the generation of monoclonal antibodies.
View Article and Find Full Text PDFA novel humanised monoclonal antibody (Mab, h7C10) was raised against the human insulin-like growth factor-1 receptor (IGF-1R); it exhibited potent inhibition of tumour growth in animal models. Further evaluation of its inhibitory activity at hybrid receptors (Hybrid-Rs) composed of the association between IGF-1R and insulin receptor (IR) was performed. Selective, potent and efficacious inhibition of [(125)I]IGF-1 binding as well as IGF-1- and IGF-2-mediated receptor phosphorylation was demonstrated at both IGF-1R and Hybrid-Rs, without activity at IR.
View Article and Find Full Text PDFThe subject of the present study was the functional and pharmacological characterization of human 5-HT(1A) receptor regulation of ion channels in Xenopus oocytes. Activation of the heterologously expressed human 5-HT(1A) receptor induced two distinct currents in Xenopus oocytes, consisting of a smooth inward current (I(smooth)) and an oscillatory calcium-activated chloride current, I(Cl(Ca)). 5-HT(1A) receptor coupling to both ionic responses as well as to co-expressed inward rectifier potassium (GIRK) channels was pharmacologically characterized using 5-HT(1A) receptor agonists.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) regulate storage and catabolism of fats and carbohydrates. PPARgamma activity increases insulin sensitivity and adipocyte differentiation at the expense of adipogenesis and weight gain. The goal of this study was to 1) clone the promoter of the human adipocyte fatty acid binding protein (aP2) gene, namely fatty acid-binding protein-4, 2) characterize its pharmacological regulation, and 3) determine its putative predictability for adipogenesis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
August 2003
The ability of the human 5-HT(1A) receptor to activate different recombinant G(alpha) proteins was investigated in CHO-K1 cells by monitoring 5-HT ligand-mediated Ca(2+) responses upon co-expression with either G(alphaq), G(alpha15) or chimeric G(alphaq/i3) proteins. Each G(alpha) protein yielded a typical 5-HT-dependent Ca(2+) response with different kinetic parameters both for the onset-time of maximal Ca(2+) response (21 to 30 s) and time-dependent attenuation (43 to 73% of residual activity at 1 min upon peak Ca(2+) response). Pertussis toxin-treatment fully abolished the Ca(2+) responses mediated by both the endogenous G(i/o) and the chimeric-PTX-sensitive G(alphaq/i3) proteins.
View Article and Find Full Text PDFA dopamine D(2Short) receptor:G(alphao) fusion protein was expressed in Sf9 cells using the baculovirus expression system. [(3)H]Spiperone bound to D(2Short):G(alphao) with a pK(d) approximately 10. Dopamine stimulated the binding of [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) to D(2Short):G(alphao) expressed with Gbeta(1)gamma(2) (E(max)>460%; pEC(50) 5.
View Article and Find Full Text PDFWhereas agonist-directed differential signaling at a single receptor subtype has become an accepted pharmacological concept, distinct behaviors by ligands that are assumed to be antagonists is less documented. The intrinsic activity and capacity of antagonism for a new series of imidazoline-derived adrenergic ligands analogous to dexefaroxan were investigated by measuring two distinct signaling pathways at the recombinant human alpha 2A-adrenoceptor (alpha 2A AR): 1) pertussis toxin-resistant guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding responses mediated by either a recombinant G alpha oCys351Ile or G alpha i2Cys352Ile protein in CHO-K1 cells, and 2) inhibition of cAMP formation in a stably transfected C6-glial cell line. Ligands could be differentiated as inverse agonists [i.
View Article and Find Full Text PDFThe role of RGS proteins on dopaminergic D2S receptor (D2SR) signalling was investigated in Chinese hamster ovary (CHO)-K1 cells, using recombinant RGS protein- and PTX-insensitive G alphao proteins. Dopamine-mediated [35S]GTPgammaS binding was attenuated by more than 60% in CHO-K1 D2SR cells coexpressing a RGS protein- and PTX-insensitive G(alphao)Gly184Ser:Cys351Ile protein versus cells coexpressing a similar amount of PTX-insensitive G alphaoCys351Ile protein. Dopamine-agonist-mediated Ca2+ responses were dependent on the coexpression with a G alphao Cys351Ile protein and were fully abolished upon coexpression with a G alphaoGly184Ser:Cys351Ile protein.
View Article and Find Full Text PDFNeuroleptic drugs have been suggested to act as inverse agonists at the dopamine D2 receptor, but no link between therapeutic efficacy and ligand's intrinsic activity could be determined. Since the resolving capacity to monitor inverse agonism at dopamine D2 receptors is limited, we speculated that receptor constitutive activation could be enhanced by constructing chimeric D2/alpha 1B receptors. Marked inverse agonist responses with a series of dopamine antagonists were obtained by: 1) exchange of the D 2short receptor's 3ICL by that of the alpha 1B-adrenoceptor, 2) incorporation of an activating mutation (Ala 279 Glu) in the distal portion of its 3ICL, and 3) coexpression with a G alpha11 protein.
View Article and Find Full Text PDF