Here, we describe the production of stable isotope-labeled human immunoglobulin G1 ([ C]-hIgG1) using [ C]-L-lysine/arginine-labeled hIgG1. The fermentation process was run in shake flasks containing labeled arginine and lysinethat were incorporated into the produced recombinant hIgG1. The [ C]-hIgG1 was purified, and label incorporation was determined to be >99% at all lysine and arginine moieties.
View Article and Find Full Text PDFAn increasing demand of new analytical methods is associated with the growing number of biotherapeutic programs being prosecuted in the pharmaceutical industry. Whilst immunoassay has been the standard method for decades, a great interest in assays based on liquid chromatography tandem mass spectrometry (LC-MS/MS) is evolving. In this present work, the development of a generic method for the quantitative analysis of therapeutic proteins based on human immunoglobulin G (hIgG) in rat serum is reported.
View Article and Find Full Text PDFFor antibody drug conjugates (ADCs), the fate of the cytotoxic payload in vivo needs to be well understood to mitigate toxicity risks and properly design the first in-patient studies. Therefore, a distribution, metabolism, and excretion (DME) study with a radiolabeled rat cross-reactive ADC ([(3)H]DM1-LNL897) targeting the P-cadherin receptor was conducted in female tumor-bearing nude rats. Although multiple components [total radioactivity, conjugated ADC, total ADC, emtansine (DM1) payload, and catabolites] needed to be monitored with different technologies (liquid scintillation counting, liquid chromatography/mass spectrometry, enzyme-linked immunosorbent assay, and size exclusion chromatography), the pharmacokinetic data were nearly superimposable with the various techniques.
View Article and Find Full Text PDFRationale: Antibody-drug conjugates (ADCs) are some of the most promising antibody-related therapeutics. The fate of the cytotoxic moiety of ADCs in vivo after proteolytic degradation of the antibody needs to be well understood in order to mitigate toxicity risks and design proper first in patient studies.
Methods: The feasibility of liquid extraction surface analysis micro-capillary liquid chromatography/tandem mass spectrometry (LESA-μLC/MS/MS) was tested for direct surface sampling of two possible ADC catabolites composed of synthetically modified maytansinoid (DM1) and 4-[N-maleimidomethyl]cyclohexane-1-carbonyl (MCC) from rat liver and tumor tissue.
In the present study, the application of a liquid chromatography high-resolution mass spectrometry (LC-HRMS) analytical assay for the quantitative analysis of a recombinant human immunoglobulin G1 (hIgG1) in rat serum is reported using three generic peptides GPSVFPLAPSSK (GPS), TTPPVLDSDGSFFLYSK (TTP), and VVSVLTVLHQDWLNGK (VVS). Moreover, the deamidation site of a fourth peptide FNWYVDGVEVHNAK (FNW) was identified and further excluded from the assay evaluation due to the inaccuracy of the quantitative results. The rat serum samples were spiked with a fully labeled hIgG1 as internal standard (ISTD).
View Article and Find Full Text PDF1. 4-[2((1R,2R)-2-Hydroxycyclohexylamino)-benzothiazol-6-yloxyl]-pyridine-2-carboxylic acid methylamide (BLZ945) is a small molecule inhibitor of CSF-1R kinase activity within osteoclasts designed to prevent skeletal related events in metastatic disease. Key metabolites were enzymatically and structurally characterized to understand the metabolic fate of BLZ945 and pharmacological implications.
View Article and Find Full Text PDFThe disposition and biotransformation of (14)C-radiolabeled mavoglurant were investigated in four healthy male subjects after a single oral dose of 200 mg. Blood, plasma, urine, and feces collected over 7 days were analyzed for total radioactivity, mavoglurant was quantified in plasma by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and metabolite profiles were generated in plasma and excreta by high-performance liquid chromatography (HPLC) and radioactivity detection. The chemical structures of mavoglurant metabolites were characterized by LC-MS/MS, wet-chemical and enzymatic methods, NMR spectroscopy, and comparison with reference compounds.
View Article and Find Full Text PDFGeneration and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process.
View Article and Find Full Text PDF