Publications by authors named "Thierry T Diagana"

Diarrhoeal disease caused by Cryptosporidium is a major cause of morbidity and mortality in young and malnourished children from low- and middle-income countries, with no vaccine or effective treatment. Here we describe the discovery of EDI048, a Cryptosporidium PI(4)K inhibitor, designed to be active at the infection site in the gastrointestinal tract and undergo rapid metabolism in the liver. By using mutational analysis and crystal structure, we show that EDI048 binds to highly conserved amino acid residues in the ATP-binding site.

View Article and Find Full Text PDF

The COVID-19 pandemic highlights the ongoing risk of zoonotic transmission of coronaviruses to global health. To prepare for future pandemics, it is essential to develop effective antivirals targeting a broad range of coronaviruses. Targeting the essential and clinically validated coronavirus main protease (M), we constructed a structurally diverse M panel by clustering all known coronavirus sequences by M active site sequence similarity.

View Article and Find Full Text PDF

In malaria drug discovery, understanding the mode of action of lead compounds is important as it helps in predicting the potential emergence of drug resistance in the field when these drugs are eventually deployed. In this study, we have employed metabolomics technologies to characterize the potential targets of anti-malarial drug candidates in the developmental pipeline at NITD. We show that NITD fast-acting leads belonging to spiroindolone and imidazothiadiazole class induce a common biochemical theme in drug-exposed malaria parasites which is similar to another fast-acting, clinically available drug, DHA.

View Article and Find Full Text PDF

Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT.

View Article and Find Full Text PDF
Article Synopsis
  • Prevention is crucial in public health, but innovative drugs are essential for controlling and eliminating neglected diseases.
  • Advances in drug discovery technologies and scientific knowledge are transforming research and development in this area.
  • The text specifically highlights the progress in treating parasitic infections like malaria, while addressing challenges and priorities for creating new antiparasitic medications.
View Article and Find Full Text PDF

Background: The zoonotic simian parasite Plasmodium cynomolgi develops into replicating schizonts and dormant hypnozoites during the infection of hepatocytes and is used as a model organism to study relapsing malaria. The transcriptional profiling of P. cynomolgi liver stages was previously reported and revealed many important biological features of the parasite but left out the host response to malaria infection.

View Article and Find Full Text PDF

Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated.

View Article and Find Full Text PDF

A series of 5-aryl-2-amino-midazohiaiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage () growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of (), which demonstrates potent cellular activity against 3D7 (EC = 0.006 μM) and achieves "artemisinin-like" kill kinetics with a parasite clearance time of <24 h.

View Article and Find Full Text PDF
Article Synopsis
  • Cryptosporidiosis causes severe diarrhea and high mortality in children under two, especially in low and middle-income countries, and is linked to malnutrition and growth stunting.
  • Current treatments are inadequate, but new therapeutic agents show promise from recent screening methods and repurposing studies.
  • Using a Controlled Human Infection Model (CHIM) with healthy adults could help establish safety and efficacy for pediatric treatments, potentially speeding up the process to bring effective therapies to vulnerable children.
View Article and Find Full Text PDF

Cryptosporidium is a widely distributed enteric parasite that has an increasingly appreciated pathogenic role, particularly in pediatric diarrhea. While cryptosporidiosis has likely affected humanity for millennia, its recent "emergence" is largely the result of discoveries made through major epidemiologic studies in the past decade. There is no vaccine, and the only approved medicine, nitazoxanide, has been shown to have efficacy limitations in several patient groups known to be at elevated risk of disease.

View Article and Find Full Text PDF

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility.

View Article and Find Full Text PDF
Article Synopsis
  • The kinetochore is a critical structure that forms on chromosome centromeres, crucial for attaching spindle microtubules during cell division in organisms like Trypanosoma brucei.
  • Researchers identified amidobenzimidazoles (AB) as potent protein kinase inhibitors targeting the CLK1 kinase, which is essential for T. brucei's survival.
  • Inhibiting CLK1 disrupts the recruitment of proteins to the kinetochore and hinders cell division, indicating its potential as a selective drug target for treating diseases caused by parasitic protozoa.
View Article and Find Full Text PDF

Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and 'easy to use' oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease.

View Article and Find Full Text PDF

malaria is characterized by repeated episodes of blood stage infection (relapses) resulting from activation of dormant stages in the liver, so-called hypnozoites. Transition of hypnozoites into developing schizonts has never been observed. A barrier for studying this has been the lack of a system in which to monitor growth of liver stages.

View Article and Find Full Text PDF

Diarrhea has long been recognized as an important cause of mortality during childhood. In parallel with ensuring access to proven care practices is the imperative to apply modern advances in medicine, science, and technology to accelerate progress against diarrheal disease, particularly in developing countries where the burden of avoidable harm is the greatest. In order to highlight achievements and identify outstanding areas of need, we reviewed the landscape of recent innovations that have significance for the study and clinical management of pediatric diarrhea in low resource settings.

View Article and Find Full Text PDF

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P.

View Article and Find Full Text PDF

Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi.

View Article and Find Full Text PDF

hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017).

View Article and Find Full Text PDF

Relapses of dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al.

View Article and Find Full Text PDF

Kinetoplastid parasites have caused human disease for millennia. Significant achievements have been made toward developing new treatments for leishmaniasis (particularly on the Indian subcontinent) and for human African trypanosomiasis (HAT). Moreover, the sustained decrease in the incidence of HAT has made the prospect of elimination a tantalizing reality.

View Article and Find Full Text PDF

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the kelch-13 () propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA).

View Article and Find Full Text PDF

Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need.

View Article and Find Full Text PDF

liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite .

View Article and Find Full Text PDF

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals.

View Article and Find Full Text PDF

Background: KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites.

Methods: We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria.

View Article and Find Full Text PDF