Publications by authors named "Thierry Pelissier"

Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks.

View Article and Find Full Text PDF

In flowering plants, heterochromatin is demarcated by the histone variant H2A.W, elevated levels of the linker histone H1, and specific epigenetic modifications, such as high levels of DNA methylation at both CG and non-CG sites. How H2A.

View Article and Find Full Text PDF

Background: Chromatin organizes DNA and regulates its transcriptional activity through epigenetic modifications. Heterochromatic regions of the genome are generally transcriptionally silent, while euchromatin is more prone to transcription. During DNA replication, both genetic information and chromatin modifications must be faithfully passed on to daughter strands.

View Article and Find Full Text PDF

The two paralogous Arabidopsis genes MAINTENANCE OF MERISTEMS (MAIN) and MAINTENANCE OF MERISTEMS LIKE1 (MAIL1) encode a conserved retrotransposon-related plant mobile domain and are known to be required for silencing of transposable elements (TE) and for primary root development. Loss of function of either MAIN or MAIL1 leads to release of heterochromatic TEs, reduced condensation of pericentromeric heterochromatin, cell death of meristem cells and growth arrest of the primary root soon after germination. Here, we show that they act in one protein complex that also contains the inactive isoform of PROTEIN PHOSPHATASE 7 (PP7), which is named PROTEIN PHOSPHATASE 7-LIKE (PP7L).

View Article and Find Full Text PDF

Constitutive heterochromatin is associated with repressive epigenetic modifications of histones and DNA which silence transcription. Yet, particular mutations or environmental changes can destabilize heterochromatin-associated silencing without noticeable changes in repressive epigenetic marks. Factors allowing transcription in this nonpermissive chromatin context remain poorly known.

View Article and Find Full Text PDF

Transposable elements (TEs) are prevalent in most eukaryotes, and host genomes have devised silencing strategies to rein in TE activity. One of these, transcriptional silencing, is generally associated with DNA methylation and short interfering RNAs. Here we show that the Arabidopsis genes MAIL1 and MAIN define an alternative silencing pathway independent of DNA methylation and short interfering RNAs.

View Article and Find Full Text PDF

Genes and transposons can exist in variable DNA methylation states, with potentially differential transcription. How these epialleles emerge is poorly understood. Here, we show that crossing an Arabidopsis thaliana plant with a hypomethylated genome and a normally methylated WT individual results, already in the F1 generation, in widespread changes in DNA methylation and transcription patterns.

View Article and Find Full Text PDF

In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6.

View Article and Find Full Text PDF

Background: In plants and animals, a large number of double-stranded RNA binding proteins (DRBs) have been shown to act as non-catalytic cofactors of DICERs and to participate in the biogenesis of small RNAs involved in RNA silencing. We have previously shown that the loss of Arabidopsis thaliana's DRB2 protein results in a significant increase in the population of RNA polymerase IV (p4) dependent siRNAs, which are involved in the RNA-directed DNA methylation (RdDM) process.

Results: Surprisingly, despite this observation, we show in this work that DRB2 is part of a high molecular weight complex that does not involve RdDM actors but several chromatin regulator proteins, such as MSI4, PRMT4B and HDA19.

View Article and Find Full Text PDF

The stability of epigenetic patterns is critical for genome integrity and gene expression. This highly coordinated process involves interrelated positive and negative regulators that impact distinct epigenetic marks, including DNA methylation and dimethylation at histone H3 lysine 9 (H3K9me2). In Arabidopsis, mutations in the DNA methyltransferase MET1, which maintains CG methylation, result in aberrant patterns of other epigenetic marks, including ectopic non-CG methylation and the relocation of H3K9me2 from heterochromatin into gene-rich chromosome regions.

View Article and Find Full Text PDF

Biogenesis of the vast majority of plant siRNAs depends on the activity of the plant-specific RNA polymerase IV (PolIV) enzyme. As part of the RNA-dependent DNA methylation (RdDM) process, PolIV-dependent siRNAs (p4-siRNAs) are loaded onto an ARGONAUTE4-containing complex and guide de novo DNA methyltransferases to target loci. Here we show that the double-stranded RNA binding proteins DRB2 and DRB4 are required for proper accumulation of p4-siRNAs.

View Article and Find Full Text PDF

Background: Phosphorylation of eIF2alpha provides a key mechanism for down-regulating protein synthesis in response to nutrient starvation or stresses in mammalian and yeast cells. However, this process has not been well characterized in plants

Results: We show here that in response to amino acid and purine starvations, UV, cold shock and wounding, the Arabidopsis GCN2 kinase (AtGCN2) is activated and phosphorylates eIF2alpha. We show that AtGCN2 is essential for plant growth in stress situations and that its activity results in a strong reduction in global protein synthesis.

View Article and Find Full Text PDF

The proper temporal and spatial expression of genes during plant development is governed, in part, by the regulatory activities of various types of small RNAs produced by the different RNAi pathways. Here we report that transgenic Arabidopsis plants constitutively expressing the rapeseed SB1 SINE retroposon exhibit developmental defects resembling those observed in some RNAi mutants. We show that SB1 RNA interacts with HYL1 (DRB1), a double-stranded RNA-binding protein (dsRBP) that associates with the Dicer homologue DCL1 to produce microRNAs.

View Article and Find Full Text PDF

Nanoviruses, multicomponent single-stranded DNA plant viruses, encode a unique cell cycle link protein, Clink, that interacts with retinoblastoma-related proteins (RBR). We have established transgenic Arabidopsis thaliana lines that conditionally express Clink or a Clink variant deficient in RBR binding. By controlled induction of Clink expression, we demonstrated the capacity of the Clink protein to alter RBR function in vivo.

View Article and Find Full Text PDF

Despite the ubiquitous distribution of tRNA-related short interspersed elements (SINEs) in eukaryotic species, very little is known about the synthesis and processing of their RNAs. In this work, we have characterized in detail the different RNA populations resulting from the expression of a tRNA-related SINE S1 founder copy in Arabidopsis thaliana. The main population is composed of poly(A)-ending (pa) SINE RNAs, while two minor populations correspond to full-length (fl) or poly(A) minus [small cytoplasmic (sc)] SINE RNAs.

View Article and Find Full Text PDF

The plasmodesmata and phloem form a symplasmic network that mediates direct cell-cell communication and transport throughout a plant. Selected endogenous RNAs, viral RNAs, and viroids traffic between specific cells or organs via this network. Whether an RNA itself has structural motifs to potentiate trafficking is not well understood.

View Article and Find Full Text PDF

Viroid infection is associated with the production of short interfering RNAs (siRNAs), a hallmark of post-transcriptional gene silencing (PTGS). However, viroid RNAs autonomously replicating in the nucleus have not been shown to trigger the degradation of homologous RNA in the cytoplasm. To investigate the potential of viroids for the induction of gene silencing, non-infectious fragments of potato spindle tuber viroid (PSTVd) cDNA were transcriptionally fused to the 3' end of the green fluorescent protein (GFP)-coding region.

View Article and Find Full Text PDF

The current model of short interspersed nuclear element (SINE) mobility suggests that these non-coding retroposons are able to recruit for their own benefits the enzymatic machinery encoded by autonomous long interspersed nuclear elements (LINEs). The recent characterization of potential SINE-LINE partner pairs that share common 3' end sequences concurs with this model and has led to a potent picture of tRNA-derived SINEs consisting of a tripartite functional structure (Mol. Cell.

View Article and Find Full Text PDF