Publications by authors named "Thierry Pabiou"

Genetic selection has been identified as a promising approach for reducing enteric methane (CH4) emissions; a prerequisite for genetic evaluations; however, these are estimates of the necessary genetic parameters based on a population representative of where the genetic evaluations will be used. The objective of this study was, therefore, to derive genetic parameters for a series of definitions of CH4, carbon dioxide (CO2), and dry matter intake (DMI) as well as genetic correlations between CH4, CO2, and DMI in a bid to address the paucity of studies involving methane emissions measured in beef cattle using GreenFeed systems. Lastly, estimated breeding values (EBV) were generated for nine alternative definitions of CH4 using the derived genetic parameters; the EBV were validated against both phenotypic performance (adjusted for non-genetic effects) and the Legarra and Reverter method comparing EBV generated for a subset of the dataset compared to EBV generated from the entire dataset.

View Article and Find Full Text PDF

The construction of covariance matrices that account for the genetic relationships among individuals, using pedigree or genotype data, is integral to genetic evaluations, which are now routinely used in the field of animal breeding. The objective of the present study was to estimate the standard deviation in the proportion of the segregating genome that is shared between pairs of full-sibling cattle and sheep independently. Post edits, genotype data comprising 46,069 autosomal single nucleotide polymorphisms (SNPs) were available for 4532 unique full-sibling sheep pairs, as well as for their respective parents.

View Article and Find Full Text PDF

Rumen methanogenesis results in the loss of 6% to 10% of gross energy intake in cattle and globally is the single most significant source of anthropogenic methane (CH4) emissions. The purpose of this study was to analyze greenhouse gas traits recorded in a commercial feedlot unit to gain an understanding into the relationships between greenhouse gas traits and production traits. Methane and carbon dioxide (CO2) data recorded via multiple GreenFeed Emission Monitoring (GEM), systems as well as feed intake, live weight, ultrasound scanning data, and slaughter data were available on 1,099 animals destined for beef production, of which 648 were steers, 361 were heifers, and 90 were bulls.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic evaluations help sheep producers make better breeding decisions and enhance farm performance through genetic gain.
  • Despite their importance, there's a lack of large-scale studies validating sheep breeding objectives using field data.
  • This study analyzed over 17,000 ewes and their progeny across 139 flocks, showing that selecting ewes with a high maternal index leads to better lamb survival and growth, while superior terminal-index rams produce heavier lambs, emphasizing the benefits of targeted breeding for improved flock productivity.
View Article and Find Full Text PDF

Deep Learning (DL) has proven to be a successful tool for many image classification problems but has yet to be applied to carcass images. The aim of this study was to train DL models to predict carcass cut yields and compare predictions to more standard machine learning (ML) methods. Three approaches were undertaken to predict the grouped carcass cut yields of Grilling cuts and Roasting cuts from a large dataset of 54,598 and 69,246 animals respectively.

View Article and Find Full Text PDF

Understanding the phenotypic factors that affect lamb live weight and carcass composition is imperative to generating accurate genetic evaluations and further enables implementation of functional management strategies. This study investigated phenotypic factors affecting live weight across the growing season and traits associated with carcass composition in lambs from a multibreed sheep population. Four live weight traits and two carcass composition traits were considered for analysis namely; birth, preweaning, weaning, and postweaning weight, and ultrasound muscle depth and fat depth.

View Article and Find Full Text PDF

The decision on which ewe lamb to retain versus which to sell is likely to vary by producer based on personal preference. What is not known, however, is if any commonality exists among producers in the characteristics of ewe lambs that influence their eventual fate. The objective of the present study was to determine what genetic and nongenetic factors associate with the fate of maiden ewe lambs.

View Article and Find Full Text PDF

Input parameters for decision support tools are comprised of, amongst others, knowledge of the associated factors and the extent of those associations with the animal-level feature of interest. The objective of the present study was to quantify the association between animal-level factors with primal cut yields in cattle and to understand the extent of the variability in primal cut yields independent carcass weight. The data used consisted of the weight of 14 primal carcass cuts (as well as carcass weight, conformation, and fat score) on up to 54,250 young cattle slaughtered between the years 2013 and 2017.

View Article and Find Full Text PDF

Having access to early predictions of both the genetic merit and expected phenotypic performance of an individual or its progeny can contribute to more informed decision-making. The objective here was to evaluate the usefulness of routinely available subjectively scored linear conformation information on live animals to predict genetic merit for primal carcass cut yields of their relatives. Data on 6 muscular and 6 skeletal traits on 43,078 live animals were used; the weights of up to 14 primal cuts plus 3 groups of primal cuts of 31,827 cattle were also used.

View Article and Find Full Text PDF

The ability to alter the morphology of cattle towards greater yields of higher value primal cuts has the potential to increase the value of animals at slaughter. Using weight records of 14 primal cuts from 31,827 cattle, the objective of the present study was to quantify the extent of genetic variability in these primal cuts; also of interest was the degree of genetic variability in the primal cuts adjusted to a common carcass weight. Variance components were estimated for each primal cut using animal linear mixed models.

View Article and Find Full Text PDF

The study objective was to quantify the ability of genetic merit for a generated carcass index to differentiate animals on primal carcass cut weights using data from 1,446 herds on 9,414 heifers and 22,413 steers with weights for 14 different primal carcass cuts (plus 3 generated groups of cuts). The carcass genetic merit index was compromised of carcass weight (positive weight), conformation (positive weight), and fat score (negative weight), each equally weighted within the index. The association analyses were undertaken using linear mixed models; models were run with or without carcass weight as a covariate.

View Article and Find Full Text PDF

Ewe efficiency has traditionally been defined as the ratio of litter weight to ewe weight; given the statistical properties of ratio traits, an alternative strategy is proposed in the present study. The concept of using the deviation in performance of an animal from the population norm has grown in popularity as a measure of animal-level efficiency. The objective of the present study was to define novel measures of efficiency for sheep, which considers the combined weight of a litter of lambs relative to the weight of their dam, and vice versa.

View Article and Find Full Text PDF