In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-β nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-β ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification.
View Article and Find Full Text PDFDuring early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF.
View Article and Find Full Text PDFDuring sea urchin development, secretion of Nodal and BMP2/4 ligands and their antagonists Lefty and Chordin from a ventral organiser region specifies the ventral and dorsal territories. This process relies on a complex interplay between the Nodal and BMP pathways through numerous regulatory circuits. To decipher the interplay between these pathways, we used a combination of treatments with recombinant Nodal and BMP2/4 proteins and a computational modelling approach.
View Article and Find Full Text PDFSpecification of the main axes of polarity of the embryo is an essential process during embryonic development. In many species, this process is achieved by the localization of maternal factors into discrete regions of the egg. However, in other animals, like in amniotes and in echinoderms, the considerable plasticity of the early blastomeres seems to preclude the existence of maternal determinants and the mechanisms by which the radial symmetry of the egg is broken remain largely enigmatic.
View Article and Find Full Text PDFMembers of the wnt gene family encode secreted glycoproteins that mediate critical intercellular communications in metazoans. Large-scale genome and transcriptome analyses have shown that this family is composed of 13 distinct subfamilies. These analyses have further established that the number of wnt genes per subfamily varies significantly between metazoan phyla, highlighting that gene duplication and gene loss events have shaped the complements of wnt genes during evolution.
View Article and Find Full Text PDFWith the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways.
View Article and Find Full Text PDFIn the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood.
View Article and Find Full Text PDFDorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis.
View Article and Find Full Text PDFUnlabelled: The sea urchin endoskeleton consists of a magnesium-rich biocalcite comprising a small amount of occluded organic macromolecules. This structure constitutes a key-model for understanding the mineral--organics interplay, and for conceiving in vitro bio-inspired materials with tailored properties. Here we employed a deep-clean technique to purify the occluded proteins from adult Paracentrotus lividus tests.
View Article and Find Full Text PDFDuring development of chordates, establishment of the body plan relies on the activity of an organizing centre located on the dorsal side of the embryo that patterns the embryo and induces neural tissue. Intriguingly, the evolutionary origin of this crucial signalling centre remains unclear and whether analogous organizers regulate D/V patterning in other deuterostome or protostome phyla is not known. Here we provide evidence that the ventral ectoderm of the sea urchin embryo is a long-range organizing centre that shares several fundamental properties with the Spemann organizer: the ability to induce duplicated embryonic axes when ectopically induced, the ability to induce neural fate in neighbouring tissues and the ability to finely regulate the level of BMP signalling by using an autoregulatory expansion-repression mechanism.
View Article and Find Full Text PDFSpecification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression.
View Article and Find Full Text PDFRecent studies suggest that specification of the dorsal-ventral and left-right axes of the sea urchin embryo relies on Nodal-expressing signalling centres located in the ventral ectoderm and in the archenteron that share striking similarities with vertebrate organising centres. Nodal and its downstream target BMP2/4 pattern all three germ layers along the dorsal-ventral axis, repress neural fates and control morphogenesis of the larva. Moreover, Nodal establishes left-right asymmetry by repressing formation of the adult rudiment and inhibiting germline cells differentiation on the right side, while BMP2/4 promotes expression of mesodermal genes on the left side.
View Article and Find Full Text PDFDuring echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron.
View Article and Find Full Text PDFThe TGFβ family member Nodal is expressed early in the presumptive ventral ectoderm of the early sea urchin embryo and its activity is crucial for dorsal-ventral (D/V) axis specification. Analysis of the nodal promoter identified a number of critical binding sites for transcription factors of different families including Sox, Oct, TCF and bZIP, but in most cases the specific factors that regulate nodal expression are not known. In this study, we report that the maternal factor Oct1/2 functions as a positive regulator of nodal and that its activity is essential for the initiation of nodal expression.
View Article and Find Full Text PDFIn the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN.
View Article and Find Full Text PDFEchinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood.
View Article and Find Full Text PDFNodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm.
View Article and Find Full Text PDFFormation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood.
View Article and Find Full Text PDFNodal is a key player in the process regulating oral-aboral axis formation in the sea urchin embryo. Expressed early within an oral organizing centre, it is required to specify both the oral and aboral ectoderm territories by driving an oral-aboral gene regulatory network. A model for oral-aboral axis specification has been proposed relying on the self activation of Nodal and the diffusion of the long-range antagonist Lefty resulting in a sharp restriction of Nodal activity within the oral field.
View Article and Find Full Text PDFThe sea urchin embryo is emerging as an attractive model to study morphogenetic processes such as directed migration of mesenchyme cells and cell sheet invagination, but surprisingly, few of the genes regulating these processes have yet been characterized. We present evidence that FGFA, the first FGF family member characterized in the sea urchin, regulates directed migration of mesenchyme cells, morphogenesis of the skeleton and gastrulation during early development. We found that at blastula stages, FGFA and a novel putative FGF receptor are expressed in a pattern that prefigures morphogenesis of the skeletogenic mesoderm and that suggests that FGFA is one of the elusive signals that guide migration of primary mesenchyme cells (PMCs).
View Article and Find Full Text PDFThe TGF-beta family member Nodal is essential for specification of the dorsal-ventral axis of the sea urchin embryo, but the molecular factors regulating its expression are not known. Analysis of the nodal promoter is an excellent entry point to identify these factors and to dissect the regulatory logic driving dorsal-ventral axis specification. Using phylogenetic footprinting, we delineated two regulatory regions located in the 5' region of the nodal promoter and in the intron that are required for correct spatial expression and for autoregulation.
View Article and Find Full Text PDFWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome.
View Article and Find Full Text PDFThe Receptor Tyrosine kinase (RTK) and TGF-beta signaling pathways play essential roles during development in many organisms and regulate a plethora of cellular responses. From the genome sequence of Strongylocentrotus purpuratus, we have made an inventory of the genes encoding receptor tyrosine kinases and their ligands, and of the genes encoding cytokines of the TGF-beta superfamily and their downstream components. The sea urchin genome contains at least 20 genes coding for canonical receptor tyrosine kinases.
View Article and Find Full Text PDF