In this work, we introduce a polymer version of a previously developed silicon MEMS drop deposition tool for surface functionalization that consists of a microcantilever integrating an open fluidic channel and a reservoir. The device is fabricated by laser stereolithography, which offers the advantages of low-cost and fast prototyping. Additionally, thanks to the ability to process multiple materials, a magnetic base is incorporated into the cantilever for convenient handling and attachment to the holder of a robotized stage used for spotting.
View Article and Find Full Text PDFWe have previously surveyed a panel of 508 physicians from around the world about which biomarkers would be relevant if obtained in a very short time frame, corresponding to emergency situations (life-threatening or not). The biomarkers that emerged from this study were markers of cardiovascular disease: troponin, D-dimers, and brain natriuretic peptide (BNP). Cardiovascular disease is a group of disorders affecting the heart and blood vessels.
View Article and Find Full Text PDF(1) Backround: Technological advances should foster gains in physicians' efficiency. For example, a reduction of the medical decision time can be enabled by faster biological tests. The main objective of this study was to collect responses from an international panel of physicians on their needs for biomarkers and also to convey the improvement in the outcome to be made possible by the potential development of fast diagnostic tests for these biomarkers.
View Article and Find Full Text PDFWe present a fluorimetry-based technology for micro-RNA-21 (miR-21) sensing based on the concentration of miR-molecular beacon (MB) complexes and flushing of unbound MB. This concentration module consists of a microfluidic channel with the shape of a funnel operated with electrohydrodynamic actuation. We report a limit of detection of 2 pM in less than 1 min for miR-21 alone, and then demonstrate that miR-21 levels, measured in fine needle biopsy samples, from patients with pancreatic cancer correlate with the reference technique of reverse-transcription polymerase chain reaction (RT-PCR).
View Article and Find Full Text PDFSelective Area van der Waals Epitaxy (SAVWE) of III-Nitride device has been proposed recently by our group as an enabling solution for h-BN-based device transfer. By using a patterned dielectric mask with openings slightly larger than device sizes, pick-and-place of discrete LEDs onto flexible substrates was achieved. A more detailed study is needed to understand the effect of this selective area growth on material quality, device performance and device transfer.
View Article and Find Full Text PDFThe acceleration of climatic, digital, and health challenges is testing scientific communities. Scientists must provide concrete answers in terms of technological solutions to a society which expects immediate returns on the public investment. We are living such a scenario on a global scale with the pandemic crisis of COVID-19 where expectations for virological and serological diagnosis tests have been and are still gigantic.
View Article and Find Full Text PDFThe development of sensitive methods for in situ detection of biomarkers is a real challenge to bring medical diagnosis a step forward. The proof-of-concept of a remote multiplexed biomolecular interaction detection through a plasmonic optical fiber bundle is demonstrated here. The strategy relies on a fiber optic biosensor designed from a 300 µm diameter bundle composed of 6000 individual optical fibers.
View Article and Find Full Text PDFIn the era of precision medicine, the success of clinical trials, notably for patients diagnosed with cancer, strongly relies on biomarkers with pristine clinical value but also on robust and versatile analytical technologies to ensure proper patients' stratification and treatment. In this review, we will first address whether plasmatic and salivary microRNAs can be considered as a reliable source of biomarkers for cancer diagnosis and prognosis. We will then discuss the pre-analytical steps preceding miRNA quantification (from isolation to purification), and how such process could be biased and time-consuming.
View Article and Find Full Text PDFThis review summarizes recent advances in micro- and nanopore technologies with a focus on the functionalization of pores using a promising method named contactless electro-functionalization (CLEF). CLEF enables the localized grafting of electroactive entities onto the inner wall of a micro- or nano-sized pore in a solid-state silicon/silicon oxide membrane. A voltage or electrical current applied across the pore induces the surface functionalization by electroactive entities exclusively on the inside pore wall, which is a significant improvement over existing methods.
View Article and Find Full Text PDFThe development of advanced techniques of fabrication of three-dimensional (3D) microenvironments for the study of cell growth and proliferation has become one of the major motivations of material scientists and bioengineers in the past decade. Here, we present a novel residueless 3D structuration technique of poly(dimethylsiloxane) (PDMS) by water-in-PDMS emulsion casting and subsequent curing process in temperature-/pressure-controlled environment. Scanning electron microscopy and X-ray microcomputed tomography allowed us to investigate the impact of those parameters on the microarchitecture of the porous structure.
View Article and Find Full Text PDFBipolar electrochemistry (BPE) is a powerful method based on the wireless polarization of a conductive object that induces the asymmetric electroactivity at its two extremities. A key physical limitation of BPE is the size of the conductive object because the shorter the object, the larger is the potential necessary for sufficient polarization. Micrometric and nanometric objects are thus extremely difficult to address by BPE due to the very high potentials required, in the order of tens of kV or more.
View Article and Find Full Text PDFWe present µLAS, a lab-on-chip system that concentrates, separates, and detects DNA fragments in a single module. µLAS speeds up DNA size analysis in minutes using femtomolar amounts of amplified DNA. Here we tested the relevance of µLAS for sizing expanded trinucleotide repeats, which cause over 20 different neurological and neuromuscular disorders.
View Article and Find Full Text PDFMolecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus ( B = 11.
View Article and Find Full Text PDFIn this work, we demonstrate that the analysis of spatially resolved nanofluidic-embedded biosensors permits the fast and direct discrimination of single-nucleotide difference (SND) within oligonucleotide sequences in a single step interaction. We design a sensor with a linear dimension much larger than the channel depth in order to ensure that the reaction over the whole sensor is limited by the convection rate. Thus, the targets are fully collected, inducing a nonuniform spatial hybridization profile.
View Article and Find Full Text PDFWe investigate the pressure-driven transport of particles 200 or 300 nm in diameter in shallow microfluidic channels ∼1 μm in height with a bottom wall characterized by a high roughness amplitude of ∼100 nm. This study starts with the description of an assay to generate cracks in hydrophilic thin polymer films together with a structural characterization of these corrugations. Microfluidic chips of variable height are then assembled on top of these rough surfaces, and the transport of particles is assessed by measuring the velocity distribution function for a set of pressure drops.
View Article and Find Full Text PDFWe report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz) ) ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex.
View Article and Find Full Text PDFKinetic monitoring of protein interactions offers insights to their corresponding functions in cellular processes. Surface plasmon resonance (SPR) is the current standard tool used for label-free kinetic assays; however, costly and sophisticated setups are required, decreasing its accessibility to research laboratories. We present a cost-effective nanofluidic-based immunosensor for low-noise real-time kinetic measurement of fluorescent-labeled protein binding.
View Article and Find Full Text PDFNanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring.
View Article and Find Full Text PDFThe fabrication of large-area vertical junctions with a molecular spin-crossover complex displaying concerted changes of spin degrees of freedom and charge-transport properties is reported. Fabricated devices allow spin-state switching in the spin-crossover layer to be triggered and probed by optical means, while detecting associated changes in electrical resistance in the junctions.
View Article and Find Full Text PDFDNA size separation followed by purification and enrichment constitute essential operations for genetic engineering. These processes are mostly carried out using DNA electrophoresis in gels or in polymer solutions, a well-established yet lengthy technique which has been notably improved using Lab-on-Chip technologies. So far, innovations for DNA separation or enrichment have been mostly undertaken separately, and we present an approach that allows us to perform these two processes simultaneously for DNA fragments spanning 0.
View Article and Find Full Text PDFWe propose biofunctionalized nanofluidic slits (nanoslits) as an effective platform for real-time fluorescence-based biosensing in a reaction-limited regime with optimized target capture efficiency. This is achieved by the drastic reduction of the diffusion length, thereby a boosted collision frequency between the target analytes and the sensor, and the size reduction of the sensing element down to the channel height comparable to the depletion layer caused by the reaction. Hybridization experiments conducted in DNA-functionalized nanoslits demonstrate the analyte depletion and the wash-free detection ∼10 times faster compared to the best microfluidic sensing platforms.
View Article and Find Full Text PDFIn this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels.
View Article and Find Full Text PDFOptical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
In this work we simultaneously aim at addressing the design and fabrication of microelectromechanical systems (MEMS) for biological applications bearing actuation and readout capabilities together with adapted tools dedicated to surface functionalization at the microscale. The biosensing platform is based on arrays of silicon micromembranes with piezoelectric actuation and piezoresistive read-out capabilities. The detection of the cytochrome C protein using molecularly imprinted polymers (MIPs) as functional layer is demonstrated.
View Article and Find Full Text PDF