Publications by authors named "Thierry Lahaye"

We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array, where the degree of freedom is encoded in a pair of Rydberg states. Our approach relies on a combination of local addressing beams and global microwave fields. Using this method, we directly prepare two different types of three-atom entangled states, including a W state and a state exhibiting finite chirality.

View Article and Find Full Text PDF

The standard quantum limit bounds the precision of measurements that can be achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises from the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred to as quantum projection noise. Quantum metrology relies on the use of non-classical states of many-body systems to enhance the precision of measurements beyond the standard quantum limit.

View Article and Find Full Text PDF

Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions. The nature of the underlying symmetry being broken determines many of the qualitative properties of the phase; this is illustrated by the case of discrete versus continuous symmetry breaking. Indeed, in contrast to the discrete case, the breaking of a continuous symmetry leads to the emergence of gapless Goldstone modes controlling, for instance, the thermodynamic stability of the ordered phase.

View Article and Find Full Text PDF

Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail. Many platforms are being developed towards this goal, in particular based on trapped ions, superconducting circuits, neutral atoms or molecules. All of these platforms face two key challenges: scaling up the ensemble size while retaining high-quality control over the parameters, and validating the outputs for these large systems.

View Article and Find Full Text PDF

The concept of topological phases is a powerful framework for characterizing ground states of quantum many-body systems that goes beyond the paradigm of symmetry breaking. Topological phases can appear in condensed-matter systems naturally, whereas the implementation and study of such quantum many-body ground states in artificial matter require careful engineering. Here, we report the experimental realization of a symmetry-protected topological phase of interacting bosons in a one-dimensional lattice and demonstrate a robust ground state degeneracy attributed to protected zero-energy edge states.

View Article and Find Full Text PDF

A great challenge in current quantum science and technology research is to realize artificial systems of a large number of individually controlled quantum bits for applications in quantum computing and quantum simulation. Many experimental platforms are being explored, including solid-state systems, such as superconducting circuits or quantum dots, and atomic, molecular and optical systems, such as photons, trapped ions or neutral atoms. The latter offer inherently identical qubits that are well decoupled from the environment and could provide synthetic structures scalable to hundreds of qubits or more.

View Article and Find Full Text PDF

We study a system of atoms that are laser driven to nD_{3/2} Rydberg states and assess how accurately they can be mapped onto spin-1/2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms.

View Article and Find Full Text PDF

We report on the local control of the transition frequency of a spin 1/2 encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an elementary system of two spins, tuning it from a nonresonant to a resonant regime, where "bright" (super-radiant) and "dark" (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state.

View Article and Find Full Text PDF

We explore the dynamics of Rydberg excitations in an optical tweezer array under antiblockade (or facilitation) conditions. Because of the finite temperature the atomic positions are randomly spread, an effect that leads to quenched correlated disorder in the interatomic interaction strengths. This drastically affects the facilitation dynamics as we demonstrate experimentally on the elementary example of two atoms.

View Article and Find Full Text PDF

Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, deterministic loading of the traps is experimentally challenging. We demonstrate the preparation of fully loaded two-dimensional arrays of up to ~50 microtraps, each containing a single atom and arranged in arbitrary geometries.

View Article and Find Full Text PDF

Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions.

View Article and Find Full Text PDF

We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scales as the inverse third power of the lattice spacing, C(3)/R(3). The experimental data demonstrate the importance of next neighbor interactions which are manifest as revivals in the excitation dynamics.

View Article and Find Full Text PDF

Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons.

View Article and Find Full Text PDF

Primary Purpose: The staging of regional nodes by means of sentinel node detection has been shown to accurately detect subclinical nodal metastases from cutaneous melanoma. On the other hand, the oncological applications of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18FDG PET) are, nowadays, firmly established. However, the sensitivity of such metabolic imaging for staging the regional nodes in primary melanoma remains debatable.

View Article and Find Full Text PDF