Tryptophan-2,3-dioxygenase (TDO2) and indoleamine-2,3-dioxygenase (IDO1) are structurally distinct heme enzymes that catalyze the conversion of L-tryptophan to N-formyl-kynurenine, and play important roles in metabolism, inflammation, and tumor immune surveillance. The enzymes can adopt an inactive, heme-free (apo) state or an active, heme-containing (holo) state, with the balance between them varying dynamically according to biological conditions. Inhibitors of holo-TDO2 are known but, despite several advantages of the heme-free state as a drug target, no inhibitors of apo-TDO2 have been reported.
View Article and Find Full Text PDFIn this case study on an essential instrument of modern drug discovery, we summarize our successful efforts in the last four years toward enhancing the Actelion screening compound collection. A key organizational step was the establishment of the Compound Library Committee (CLC) in September 2013. This cross-functional team consisting of computational scientists, medicinal chemists and a biologist was endowed with a significant annual budget for regular new compound purchases.
View Article and Find Full Text PDFOur strategy to combat resistant bacteria consisted of targeting the GyrB/ParE ATP-binding sites located on bacterial DNA gyrase and topoisomerase IV and not utilized by marketed antibiotics. Screening around the minimal ethyl urea binding motif led to the identification of isoquinoline ethyl urea 13 as a promising starting point for fragment evolution. The optimization was guided by structure-based design and focused on antibacterial activity in vitro and in vivo, culminating in the discovery of unprecedented substituents able to interact with conserved residues within the ATP-binding site.
View Article and Find Full Text PDFScreening of one-bead one-compound libraries by incubating beads with fluorescently labeled target protein requires isolation and structure elucidation of a large number of primary hit beads. However, the potency of the identified ligands is only revealed after time consuming and expensive larger scale resynthesis and testing in solution. Often, many of the resynthesized compounds turn out to be weak target binders in solution due to large differences between surface and solution binding affinities.
View Article and Find Full Text PDFNew and improved: The incorporation of a 6-chlorotryptophan (6-Cl-Trp) into a beta-peptide (M)-3(14) helix leads to a high-affinity hDM2 inhibitor, as demonstrated by fluorescence fluctuation analysis at single molecule resolution. When conjugated to penetratin, the newly derived hDM2 binder specifically inhibits tumour cell growth in vitro.
View Article and Find Full Text PDFThe tripeptide H-Val-Ala-Leu-OH and the N-Ac-tetrapeptide amide Ac-Thr-Lys-Trp-Phe-NH2, and their beta-peptidic counterparts H-beta(3)hVal-beta(3)hAla-beta(3)hLeu-OH and Ac-beta(3)hThr-(S)beta(2)hLys-beta(3)hTrp-beta(3)hPhe-NH2, respectively, have been injected into Heliothis virescens larvae and added to cell cultures of black mexican sweet maize. The body liquids of the larvae and the supernatant of the plant cell cultures were sampled 0, 2, 3, 6, 17, and/or 24 h after application and analyzed by LC/MS. While the two alpha-peptides were degraded rapidly in these environments, the concentration of the beta-peptides was found to decrease very slowly.
View Article and Find Full Text PDFThe solid-phase synthesis and an ADME investigation with albino and pigmented male rats of the doubly 14C-labelled beta/alpha-tetrapeptide derivative Ac-beta3 hTyr-(D)Trp-beta3 hLys-beta3 hThr-lactone (3; Fig. 3) are described. After intravenous (i.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
February 2003
Four linear beta(2)/beta(3)-di- and alpha/beta(3)-tetrapeptides (1-4) were investigated as somatostatin sst(4) receptor agonists on recombinant human and mouse somatostatin receptors. Human somatostatin receptor subtypes 1-5 (sst(1-5)), and mouse somatostatin receptor subtypes 1,3,4 and 5, were characterised using the agonist radioligands [(125)I]LTT-SRIF-28, [(125)I][Tyr(10)]CST(14) and [(125)I]CGP 23996 in stably transfected Chinese hamster lung fibroblast (CCL39) cells. The peptides bound selectively to sst(4) receptors with nanomolar affinity (pK(d)=5.
View Article and Find Full Text PDF