Publications by authors named "Thierry Heidmann"

Article Synopsis
  • - Syncytins are genes derived from retroviruses that are crucial for the development of a syncytial structure in the placenta, influencing both placentogenesis and embryonic growth.
  • - In mice, there are two syncytiotrophoblast layers in the placenta, ST-I and ST-II, each expressing different syncytins: SynA and SynB, which interact with distinct cellular receptors for fusion.
  • - The study identified PiT1 as the receptor for SynB, and its absence leads to defects in the development of the ST-II layer, highlighting the importance of PiT1 in proper placental function.
View Article and Find Full Text PDF

Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins.

View Article and Find Full Text PDF

Replicative vectors derived from live-attenuated measles virus (MV) carrying additional non-measles vaccine antigens have long demonstrated safety and immunogenicity in humans despite pre-existing immunity to measles. Here, we report the vaccination of cynomolgus macaques with MV replicative vectors expressing simian-human immunodeficiency virus Gag, Env, and Nef antigens (MV-SHIV Wt) either wild type or mutated in the immunosuppressive (IS) domains of Nef and Env antigens (MV-SHIV Mt). We found that the inactivation of Nef and Env IS domains by targeted mutations led to the induction of significantly enhanced post-prime cellular immune responses.

View Article and Find Full Text PDF

Human endogenous retroviruses represent approximately 8% of our genome. Most of these sequences are defective except for a few genes such as the ancestral retroviral HEMO envelope gene (Human Endogenous MER34 ORF), recently characterized by our group. In this study, we characterized transcriptional activation of HEMO in primary tumors from The Cancer Genome Atlas (TCGA) and in metastatic tumors from a Gustave Roussy cohort.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses envelope genes of retroviral origin that are important for placentation and cell fusion, specifically in forming a layer of the placenta in mice.
  • Researchers used mice lacking a particular gene (SynB mice) to explore its role in the fusion of certain immune cells into larger multinucleated cells, like osteoclasts in bones and giant cells in soft tissues.
  • Results showed that the absence of this gene reduced the number of multinucleated cells early in formation, but did not affect their function, indicating its key role during initial stages of cell fusion rather than ongoing cell activity.
View Article and Find Full Text PDF

Elevated levels of type I interferon (IFN) during pregnancy are associated with intrauterine growth retardation, preterm birth, and fetal demise through mechanisms that are not well understood. A critical step of placental development is the fusion of trophoblast cells into a multinucleated syncytiotrophoblast (ST) layer. Fusion is mediated by syncytins, proteins deriving from ancestral endogenous retroviral envelopes.

View Article and Find Full Text PDF

Approximately 10% of the mouse genome is composed of endogenous retroviruses belonging to different families. In contrast to the situation in the human genome, several of these families correspond to recent, still-infectious elements capable of encoding complete viral particles. The mouse GLN endogenous retrovirus is one of these active families.

View Article and Find Full Text PDF

Capture of retroviral envelope genes from endogenous retroviruses has played a role in the evolution of mammals, with evidence for the involvement of these genes in the formation of the maternofetal interface of the placenta. It has been shown that the diversity of captured genes is likely to be responsible for the diversity of placental structures, ranging from poorly invasive (epitheliochorial) to highly invasive (hemochorial), with an intermediate state (endotheliochorial) as found in carnivorans. The latter recapitulate part of this evolution, with the hyena being the sole carnivoran with a hemochorial placenta.

View Article and Find Full Text PDF

Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes.

View Article and Find Full Text PDF
Article Synopsis
  • - Syncytins are genes derived from retroviruses that have evolved to play a crucial role in the formation of the placenta in mammals and some other vertebrates, including certain lizards.
  • - A new syncytin gene was identified through RNA sequencing, showing characteristics typical of syncytins, such as encoding a membrane protein that aids in cell fusion, and was found to be conserved across species over a long evolutionary period.
  • - The research indicates that the use of syncytins for placentation is not exclusive to mammals, highlighting a shared evolutionary mechanism for placental development in both mammals and certain nonmammalian species.
View Article and Find Full Text PDF

Capture of retroviral envelope genes is likely to have played a role in the emergence of placental mammals, with evidence for multiple, reiterated, and independent capture events occurring in mammals, and be responsible for the diversity of present day placental structures. Here, we uncover a full-length endogenous retrovirus envelope protein, dubbed HEMO [human endogenous MER34 (medium-reiteration-frequency-family-34) ORF], with unprecedented characteristics, because it is actively shed in the blood circulation in humans via specific cleavage of the precursor envelope protein upstream of the transmembrane domain. At variance with previously identified retroviral envelope genes, its encoding gene is found to be transcribed from a unique CpG-rich promoter not related to a retroviral LTR, with sites of expression including the placenta as well as other tissues and rather unexpectedly, stem cells as well as reprogrammed induced pluripotent stem cells (iPSCs), where the protein can also be detected.

View Article and Find Full Text PDF

Syncytin genes are envelope genes of retroviral origin that have been exapted for a role in placentation. They are involved in the formation of a syncytial structure (the syncytiotrophoblast) at the fetomaternal interface via their fusogenic activity. The mouse placenta is unique among placental mammals since the fetomaternal interface comprises two syncytiotrophoblast layers (ST-I and ST-II) instead of one, as observed in humans and all other hemochorial placentae.

View Article and Find Full Text PDF

Endogenous retroviruses are cellular genes of retroviral origin captured by their host during the course of evolution and represent around 8% of the human genome. Although most are defective and transcriptionally silenced, some are still able to generate retroviral-like particles and proteins. Among these, the HERV-K(HML2) family is remarkable since its members have amplified relatively recently and many of them still have full length coding genes.

View Article and Find Full Text PDF
Article Synopsis
  • Syncytins, originally from endogenous retroviruses, play a key role in cell-cell fusion during placentation and muscle formation, forming syncytia like the syncytiotrophoblast in placental mammals.
  • Mice lacking syncytins showed over a 20% decrease in muscle mass and fiber size, particularly in males, suggesting a male-specific impact on muscle development and characteristics.
  • Experimental results indicate syncytins are crucial for myoblast fusion and muscle repair, with similar effects observed in human and other animal myoblasts, pointing to their role in muscle growth differences between sexes in placental mammals.
View Article and Find Full Text PDF

Unlabelled: Retroviruses enter host cells through the interaction of their envelope (Env) protein with a cell surface receptor, which triggers the fusion of viral and cellular membranes. The sodium-dependent neutral amino acid transporter ASCT2 is the common receptor of the large RD114 retrovirus interference group, whose members display frequent env recombination events. Germ line retrovirus infections have led to numerous inherited endogenous retroviruses (ERVs) in vertebrate genomes, which provide useful insights into the coevolutionary history of retroviruses and their hosts.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are widely expressed and play various roles in cell homeostasis. However, because of their low conservation at the sequence level, recapitulating lncRNA evolutionary history is often challenging. While performing an ultrastructural analysis of viral particles present in uterine glands of gestating opossum females, we serendipitously noticed the presence of numerous structures similar to paraspeckles, nuclear bodies which in human and mouse cells are assembled around an architectural NEAT1/MENϵ/β lncRNA.

View Article and Find Full Text PDF

Syncytins are genes of retroviral origin captured by eutherian mammals, with a role in placentation. Here we show that some marsupials-which are the closest living relatives to eutherian mammals, although they diverged from the latter ∼190 Mya-also possess a syncytin gene. The gene identified in the South American marsupial opossum and dubbed syncytin-Opo1 has all of the characteristic features of a bona fide syncytin gene: It is fusogenic in an ex vivo cell-cell fusion assay; it is specifically expressed in the short-lived placenta at the level of the syncytial feto-maternal interface; and it is conserved in a functional state in a series of Monodelphis species.

View Article and Find Full Text PDF

Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Multiple independent events of syncytin gene capture were found to have occurred in primates, rodents, lagomorphs, carnivores, and ruminants. In the mouse, two syncytin-A and -B genes are present, which trigger the formation of the two-layered placental syncytiotrophoblast at the maternal-fetal interface, a structure classified as hemotrichorial.

View Article and Find Full Text PDF

Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Syncytins have been identified in Euarchontoglires (primates, rodents, Leporidae) and Laurasiatheria (Carnivora, ruminants) placental mammals. Here, we searched for similar genes in species that retained characteristic features of primitive mammals, namely the Malagasy and mainland African Tenrecidae.

View Article and Find Full Text PDF

Unlabelled: Endogenous retroviruses are the remnants of past retroviral infections that are scattered within mammalian genomes. In humans, most of these elements are old degenerate sequences that have lost their coding properties. The HERV-K(HML2) family is an exception: it recently amplified in the human genome and corresponds to the most active proviruses, with some intact open reading frames and the potential to encode viral particles.

View Article and Find Full Text PDF
Article Synopsis
  • Syncytin genes are proteins derived from retroviruses that play a crucial role in placenta formation, with two already found in the mouse lineage.
  • Researchers explored the squirrel-related rodent clade and discovered a new syncytin gene, named syncytin-Mar1, through genomic analysis of ground squirrels.
  • This gene exhibits specific expression in the placenta and is crucial for cell fusion processes, indicating its significant role in placentation evolution, dating back at least 25 million years.
View Article and Find Full Text PDF

We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the "mechanical" function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus.

View Article and Find Full Text PDF

Endogenous retroviruses are interspersed genomic elements that were generated after infectious retroviruses entered the germline of their host. They were initially identified as degenerate remnants of past infections, but new models of very recent or ongoing endogenisation are now emerging, allowing the real time investigation of the first steps of the coexistence between these elements and their host. Domestication of endogenous retroviruses involves several mechanisms, including transcriptional control of these elements and regulation of their mobility through the action of restriction factors.

View Article and Find Full Text PDF

The development of the emerging field of 'paleovirology' allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes 'exapted' by ancestral hosts to fulfil essential physiological roles, syncytin genes being undoubtedly among the most remarkable examples of such a phenomenon. Indeed, syncytins are 'new' genes encoding proteins derived from the envelope protein of endogenous retroviral elements that have been captured and domesticated on multiple occasions and independently in diverse mammalian species, through a process of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell-cell fusion of syncytial cell layers at the fetal-maternal interface.

View Article and Find Full Text PDF

Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation. They promote cell-cell fusion and are involved in the formation of a syncytium layer--the syncytiotrophoblast--at the materno-fetal interface. They were captured independently in eutherian mammals, and knockout mice demonstrated that they are absolutely required for placenta formation and embryo survival.

View Article and Find Full Text PDF