The ability to visualize RNA in its native subcellular environment by using single-molecule fluorescence in situ hybridization (smFISH) has reshaped our understanding of gene expression and cellular functions. A major hindrance of smFISH is the difficulty to perform systematic experiments in medium- or high-throughput formats, principally because of the high cost of generating the individual fluorescent probe sets. Here, we present high-throughput smFISH (HT-smFISH), a simple and cost-efficient method for imaging hundreds to thousands of single endogenous RNA molecules in 96-well plates.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by reduced amounts of the ubiquitously expressed Survival of Motor Neuron (SMN) protein. In agreement with its crucial role in the biogenesis of spliceosomal snRNPs, SMN-deficiency is correlated to numerous splicing alterations in patient cells and various tissues of SMA mouse models. Among the snRNPs whose assembly is impacted by SMN-deficiency, those involved in the minor spliceosome are particularly affected.
View Article and Find Full Text PDFPromoter-proximal pausing of RNA polymerase II is a key process regulating gene expression. In latent HIV-1 cells, it prevents viral transcription and is essential for latency maintenance, while in acutely infected cells the viral factor Tat releases paused polymerase to induce viral expression. Pausing is fundamental for HIV-1, but how it contributes to bursting and stochastic viral reactivation is unclear.
View Article and Find Full Text PDFLocal translation allows for a spatial control of gene expression. Here, we use high-throughput smFISH to screen centrosomal protein-coding genes, and we describe 8 human mRNAs accumulating at centrosomes. These mRNAs localize at different stages during cell cycle with a remarkable choreography, indicating a finely regulated translational program at centrosomes.
View Article and Find Full Text PDFThe architectural chromatin protein HMGA1 and the transcription factor Fra-1 are both overexpressed in aggressive triple-negative breast cancers (TNBC), where they both favor epithelial-to-mesenchymal transition, invasion, and metastasis. We therefore explored the possibility that Fra-1 might be involved in enhanced transcription of the gene in TNBCs by exploiting cancer transcriptome datasets and resorting to functional studies combining RNA interference, mRNA and transcriptional run-on assays, chromatin immunoprecipitation, and chromosome conformation capture approaches in TNBC model cell lines. Our bioinformatic analysis indicated that Fra-1 and HMGA1 expressions positively correlate in primary samples of patients with TNBC.
View Article and Find Full Text PDFSingle molecule FISH (smFISH) allows studying transcription and RNA localization by imaging individual mRNAs in single cells. We present smiFISH (single molecule inexpensive FISH), an easy to use and flexible RNA visualization and quantification approach that uses unlabelled primary probes and a fluorescently labelled secondary detector oligonucleotide. The gene-specific probes are unlabelled and can therefore be synthesized at low cost, thus allowing to use more probes per mRNA resulting in a substantial increase in detection efficiency.
View Article and Find Full Text PDFBackground: In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place.
View Article and Find Full Text PDFHow cells duplicate their chromosomes is a key determinant of cell identity and genome stability. DNA replication can initiate from more than 100,000 sites distributed along mammalian chromosomes, yet a given cell uses only a subset of these origins due to inefficient origin activation and regulation by developmental or environmental cues. An impractical consequence of cell-to-cell variations in origin firing is that population-based techniques do not accurately describe how chromosomes are replicated in single cells.
View Article and Find Full Text PDFBackground: microRNAs (miRNAs) play crucial roles in major biological processes and their deregulations are often associated with human malignancies. As such, they represent appealing candidates as targets of innovative therapies. Another interesting aspect of their biology is that they are present in various biological fluids where, advantageously, they appear to be very stable.
View Article and Find Full Text PDFMitochondrial dysfunctions are an internal cause of nuclear genome instability. Because mitochondria are key regulators of cellular metabolism, we have investigated a potential link between external growth conditions and nuclear chromosome instability in cells with mitochondrial defects. Using Saccharomyces cerevisiae, we found that cells lacking mitochondrial DNA (rho0 cells) have a unique feature, with nuclear chromosome instability that occurs in nondividing cells and strongly fluctuates depending on the cellular environment.
View Article and Find Full Text PDFThe nuclear cap-binding complex (CBC) stimulates multiple steps in several RNA maturation pathways, but how it functions in humans is incompletely understood. For small, capped RNAs such as pre-snRNAs, the CBC recruits PHAX. Here, we identify the CBCAP complex, composed of CBC, ARS2 and PHAX, and show that both CBCAP and CBC-ARS2 complexes can be reconstituted from recombinant proteins.
View Article and Find Full Text PDFSpinal muscular atrophy is a neuromuscular disease resulting from mutations in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. SMN is part of a large complex that is essential for the biogenesis of spliceosomal small nuclear RNPs. SMN also colocalizes with mRNAs in granules that are actively transported in neuronal processes, supporting the hypothesis that SMN is involved in axonal trafficking of mRNPs.
View Article and Find Full Text PDFA reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage.
View Article and Find Full Text PDFBackground: Despite its critical role for mammalian gene regulation, the basic structural landscape of chromatin in living cells remains largely unknown within chromosomal territories below the megabase scale.
Results: Here, using the 3C-qPCR method, we investigate contact frequencies at high resolution within interphase chromatin at several mouse loci. We find that, at several gene-rich loci, contact frequencies undergo a periodical modulation (every 90 to 100 kb) that affects chromatin dynamics over large genomic distances (a few hundred kilobases).
Spinal muscular atrophy results from deletions or mutations in the survival of motor neuron (SMN1) gene. The SMN protein has an essential role in the biogenesis of spliceosomal snRNPs, but the link between a defect in this process and specific splicing inhibition of pre-mRNAs has not been established. In this study, we report the construction of a temperature-degron (td) allele of the Schizosaccharomyces pombe SMN protein and show that its depletion at 37 degrees C affects splicing and formation of U1, U2, U4 and U5 snRNPs, but not of U6 and U3 ribonucleoproteins.
View Article and Find Full Text PDFSample preparation constitutes a crucial and limiting step in structural studies of proteins by NMR. The determination of the solubility and stability (SAS) conditions of biomolecules at millimolar concentrations stays today empirical and hence time- and material-consuming. Only few studies have been recently done in this field and they have highlighted the interest of using crystallogenesis tools to optimise sample conditions.
View Article and Find Full Text PDFSelf-diffusion measurement of solutes in polymer gels has been investigated using pulsed gradient spin echo NMR spectroscopy. However, few data are available on the self-diffusion of small solutes in natural polysaccharide polymers used as thickeners in the food industry. Since aroma diffusion in food matrices could have an impact on flavor release, this is an interesting and economic challenge.
View Article and Find Full Text PDF