Publications by authors named "Thierry Gefflaut"

By limiting the nitrogen source to glutamic acid, we isolated cyclic peptides from Euglena gracilis containing asparagine and non-proteinogenic amino acids. Structure elucidation was accomplished through spectroscopic methods, mass spectrometry and chemical degradation. The euglenatides potently inhibit pathogenic fungi and cancer cell lines e.

View Article and Find Full Text PDF

The globally used herbicide glufosinate-ammonium (GLA) is structurally analogous to the excitatory neurotransmitter glutamate, and is known to interfere with cellular mechanisms involved in the glutamatergic system. In this report, we used an in vitro model of murine primary neural stem cell culture to investigate the neurotoxicity of GLA and its main metabolite, 4-methylphosphinico-2-oxobutanoic acid (PPO). We demonstrated that GLA and PPO disturb ependymal wall integrity in the ventricular-subventricular zone (V-SVZ) and alter the neuro-glial differentiation of neural stem cells.

View Article and Find Full Text PDF

Transaminases are efficient tools for the stereoselective conversion of prochiral ketones into valuable chiral amines. Notably, the diversity of naturally occurring α-transaminases offers access to a wide range of L- and D-α-amino acids. We describe here two continuous colorimetric assays for the quantification of transamination activities between a keto acid and a standard donor substrate (L- or D-Glutamic acid or cysteine sulfinic acid).

View Article and Find Full Text PDF

Efficient bi-enzymatic cascades combining aldolases and α-transaminases were designed for the synthesis of γ-hydroxy-α-amino acids. These recycling cascades provide high stereoselectivity, atom economy, and an equilibrium shift of the transamination. l-syn or anti-4-hydroxyglutamic acid and d-anti-4,5-dihydroxynorvaline were thus prepared in 83-95% yield in one step from simple substrates.

View Article and Find Full Text PDF

The metabotropic glutamate (Glu) receptors (mGluRs) play key roles in modulating excitatory neurotransmission in the brain. In all, eight subtypes have been identified and divided into three groups, group I (mGlu1,5), group II (mGlu2,3), and group III (mGlu4,6-8). In this article, we present a L-2,4-syn-substituted Glu analogue, 1d, which displays selective agonist activity at mGlu2 over the remaining mGluR subtypes.

View Article and Find Full Text PDF

In the course of a project devoted to the stereoselective synthesis of non-proteinogenic α-amino acids using α-transaminases (α-TA), we report the design and optimization of generic high-throughput continuous assays for the screening of α-TA libraries. These assays are based on the use of L- or D-cysteine sulfinic acid (CSA) as irreversible amino donor and subsequent sulfite titration by colorimetry. The assays' quality was assessed under screening conditions.

View Article and Find Full Text PDF

The kainate receptors are the least studied subfamily of ionotropic glutamate receptors. These receptors are thought to have a neuromodulatory role and have been associated with a variety of disorders in the central nervous system. This makes kainate receptors interesting potential drug targets.

View Article and Find Full Text PDF

In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning, synaptic plasticity, and motor function. The synthesis of 14 enantiopure 2,4-syn-Glu analogues 2b-p is accessed by a short and efficient chemoenzymatic approach starting from readily available cyclohexanone 3.

View Article and Find Full Text PDF

Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor GluA2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes.

View Article and Find Full Text PDF

Aminotransferases are key enzymes of the metabolism of proteinogenic amino acids. These ubiquitous biocatalysts show high specific activities and relaxed substrate specificities making them valuable tools for the stereoselective synthesis of unnatural amino acids. We describe here the application of aspartate aminotransferase and branched chain aminotransferase from E.

View Article and Find Full Text PDF

Subtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures of important 4-substituted Glu analogues 4-8, were investigated at iGluRs and EAATs.

View Article and Find Full Text PDF

Glufosinate ammonium (GLA) is the active component of herbicides widely used in agriculture, truck farming, or public domains. GLA acts by inhibiting the plant glutamine synthetase (GlnS). It also inhibits mammalian GlnS in vitro and ex vivo.

View Article and Find Full Text PDF

The kainic acid (kainate, KA) receptors belong to the class of ionotropic glutamate (iGlu) receptors in the central nervous system. Five subtypes have been identified, which have been termed KA(1,2) and iGlu(5-7). In the search for subtype selective ligands, alpha-amino-5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), (4R)-methyl Glu (1a), and E-4-neopentylidene Glu (2f) have all previously been reported as selective agonists for the iGlu(5) receptor subtype.

View Article and Find Full Text PDF

( S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the central nervous system (CNS) activating the plethora of ionotropic Glu receptors (iGluRs) and metabotropic Glu receptors (mGluRs). In this paper, we present a chemo-enzymatic strategy for the enantioselective synthesis of five new Glu analogues 2a- f ( 2d is exempt) holding a functionalized substituent in the 4-position. Nine Glu analogues 2a- j are characterized pharmacologically at native 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), kainic acid (KA), and N-methyl- d-aspartic acid (NMDA) receptors in rat synaptosomes as well as in binding assays at cloned rat iGluR5-7 subtypes.

View Article and Find Full Text PDF

In the mammalian central nervous system (CNS), the action of sodium dependent excitatory amino acid transporters (EAATs) is responsible for termination of glutamatergic neurotransmission by reuptake of ( S) -glutamate (Glu) from the synaptic cleft. Five EAAT subtypes have been identified, of which EAAT1-4 are present in the CNS, while EAAT5 is localized exclusively in the retina. In this study, we have used an enantioselective chemo-enzymatic strategy to synthesize 10 new Glu analogues 2a- k ( 2d is exempt) with different functionalities in the 4 R-position and characterized their pharmacological properties at the human EAAT1-3.

View Article and Find Full Text PDF

Glufosinate-ammonium (GLA), the active compound of a worldwide-used herbicide, acts by inhibiting the plant glutamine synthetase (GS) leading to a lethal accumulation of ammonia. GS plays a pivotal role in the mammalian brain where it allows neurotransmitter glutamate recycling within astroglia. Clinical studies report that an acute GLA ingestion induces convulsions and memory impairment in humans.

View Article and Find Full Text PDF

The preparation of a phosphorylated alpha-dicarbonyl compound designed to specifically react with arginine residues of enzymes accepting phosphorylated compounds as effectors is reported, and shown to inhibit rabbit muscle aldolase in a time-dependent and irreversible manner. This irreversible inhibition occured in a buffer devoid of borate ions, suggesting that the presence of the phosphate moiety contributes in the stabilization of the adduct formed with arginine residues. Under the same conditions, the metalloenzyme iron superoxide dismutase, in which an arginine is known to be critical for the catalytic function, is not significantly inhibited.

View Article and Find Full Text PDF

A new route to alpha-keto acids is described, based on the ozonolysis of enol acetates obtained from alpha-substituted beta-keto esters. Escherichia coli branched chain aminotransferase (BCAT) activity toward a variety of substituted 2-oxoglutaric acids was demonstrated analytically. BCAT was shown to have a broad substrate spectrum, complementary to that of aspartate aminotransferase, and to offer access to a variety of glutamic acid analogues.

View Article and Find Full Text PDF

The four stereoisomers of l-2-(2-carboxycyclobutyl)glycine, l-CBG-I, l-CBG-II, l-CBG-III, and l-CBG-IV, were synthesized in good yield and high enantiomeric excess, from the corresponding cis and trans-2-oxalylcyclobutanecarboxylic acids 5 and 6 using the enzymes aspartate aminotransferase (AAT) and branched chain aminotransferase (BCAT) from Escherichia coli. The four stereoisomeric compounds were evaluated as potential ligands for the human excitatory amino acid transporters, subtypes 1, 2, and 3 (EAAT1, EAAT2, and EAAT3) in the FLIPR membrane potential assay. While the one trans-stereoisomer, l-CBG-I, displayed weak substrate activity at all three transporters, EAAT1-3, we found a particular pharmacological profile for the other trans-stereoisomer, l-CBG-II, which displayed EAAT1 substrate activity and inhibitory activity at EAAT2 and EAAT3.

View Article and Find Full Text PDF

The synthesis of two enantiomerically pure iminosugars, analogues of 1-L-deoxynojirimycin (l-DNJ) and 1-D-deoxymannojirimycin (DMJ), was achieved using cyclic sulfate substituted isoxazoline derivatives. The piperidine ring was formed via the reduction of an isoxazoline into an amine which underwent a spontaneous intramolecular cyclization by reaction with the cyclic sulfate moiety. The nucleophilic attack of these two trisubstituted piperidines and morpholine on L- and D-erythritol-1,3-cyclic sulfates gave six new nitrogen analogues of salacinol.

View Article and Find Full Text PDF

A series of nine L-2,4-syn-4-alkylglutamic acid analogues (1a-i) were synthesized in high yield and high enantiomeric excess (>99% ee) from their corresponding 4-substituted ketoglutaric acids (2a-i), using the enzyme aspartate aminotransferase (AAT) from pig heart or E. coli. The synthesized compounds were evaluated as potential ligands for the glutamate transporters EAAT1, EAAT2, and EAAT3 (excitatory amino acid transporter, subtypes 1-3) in the FLIPR membrane potential (FMP) assay.

View Article and Find Full Text PDF

Dihydroxyacetone phosphate (DHAP) was synthesized in high purity and yield in four steps starting from dihydroxyacetone dimer (DHA) (47% overall yield). DHA was converted into 2,2-dimethoxypropane-1,3-diol, which was desymmetrized by acetylation with lipase AK. The alcohol function was phosphorylated to give dibenzyl phosphate ester 4.

View Article and Find Full Text PDF