Publications by authors named "Thierry Forne"

In recent years, important efforts have been made to understand how the expression of a specific gene repertoire correlates with chromatin accessibility, histone mark deposition, as well as with chromatin looping establishing connectivity with regulatory regions. The emergence of new techniques for genome-wide analyses and their progressive optimization to work on low amounts of material allows the scientific community to obtain an integrated view of transcriptional landscapes in physiology and disease. Here, we describe our own experience aiming at correlating the TCF-4/β-catenin cistrome during liver tumorigenesis with chromatin remodeling, histone mark modifications, and long-distance DNA looping.

View Article and Find Full Text PDF

The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (Apc) or Ctnnb1-exon 3 (β-catenin) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models.

View Article and Find Full Text PDF

Genotoxicants have been used for decades as front-line therapies against cancer on the basis of their DNA-damaging actions. However, some of their non-DNA-damaging effects are also instrumental for killing dividing cells. We report here that the anthracycline Daunorubicin (DNR), one of the main drugs used to treat Acute Myeloid Leukemia (AML), induces rapid (3 h) and broad transcriptional changes in AML cells.

View Article and Find Full Text PDF

About half of the mammalian genome is constituted of repeated elements, among which endogenous retroviruses (ERVs) are known to influence gene expression and cancer development. The HP1 (Heterochromatin Protein 1) proteins are known to be essential for heterochromatin establishment and function and its loss in hepatocytes leads to the reactivation of specific ERVs and to liver tumorigenesis. Here, by studying two ERVs located upstream of genes upregulated upon loss of HP1, and , we show that these HP1-dependent ERVs behave as either alternative promoters or as putative enhancers forming a loop with promoters of endogenous genes depending on the genomic context and HP1 expression level.

View Article and Find Full Text PDF

Recent works indicate that, at specific loci, interactions of chromatin with membrane-less organelles self-assembled through mechanisms of phase separation, like nuclear bodies, are crucial to regulate genome functions, and in particular transcription. Here we describe the protocol of the high-salt recovered sequence sequencing method whose principle relies on high-throughput sequencing of genomic DNA trapped into large RNP complexes that are made insoluble by high-salt treatments.

View Article and Find Full Text PDF

Many population-based methods investigating chromatin dynamics and organization in eukaryotes are based on the chromosome conformation capture (3C) method. Here, we provide an updated version of the quantitative 3C (3C-qPCR) protocol for improved and simplified quantitative analyses of intra-chromosomal contacts.

View Article and Find Full Text PDF

Background: Genome-wide association studies have identified statistical associations between various diseases, including cancers, and a large number of single-nucleotide polymorphisms (SNPs). However, they provide no direct explanation of the mechanisms underlying the association. Based on the recent discovery that changes in three-dimensional genome organization may have functional consequences on gene regulation favoring diseases, we investigated systematically the genome-wide distribution of disease-associated SNPs with respect to a specific feature of 3D genome organization: topologically associating domains (TADs) and their borders.

View Article and Find Full Text PDF

Epigenetic mechanisms, like those involving DNA methylation, are thought to mediate the relationship between chronic cocaine dependence and molecular changes in addiction-related neurocircuitry, but have been understudied in human brain. We initially used reduced representation bisulfite sequencing (RRBS) to generate a methylome-wide profile of cocaine dependence in human post-mortem caudate tissue. We focused on the Iroquois Homeobox A (IRXA) gene cluster, where hypomethylation in exon 3 of IRX2 in neuronal nuclei was associated with cocaine dependence.

View Article and Find Full Text PDF

Background: We investigated the influence of hypoxia on the concentration of mitochondrial and nuclear cell-free DNA (McfDNA and NcfDNA, respectively).

Method: By an ultra-sensitive quantitative PCR-based assay, McfDNA and NcfDNA were measured in the supernatants of different colorectal cell lines, and in the plasma of C57/Bl6 mice engrafted with TC1 tumour cells, in normoxic or hypoxic conditions.

Results: Our data when setting cell culture conditions highlighted the higher stability of McfDNA as compared to NcfDNA and revealed that cancer cells released amounts of nuclear DNA equivalent to the mass of a chromosome over a 6-h duration of incubation.

View Article and Find Full Text PDF

The importance of genome organization at the supranucleosomal scale in the control of gene expression is increasingly recognized today. In mammals, Topologically Associating Domains (TADs) and the active/inactive chromosomal compartments are two of the main nuclear structures that contribute to this organization level. However, recent works reviewed here indicate that, at specific loci, chromatin interactions with nuclear bodies could also be crucial to regulate genome functions, in particular transcription.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates nuclear bodies in mammalian cell nuclei and their role in organizing chromatin, using a method called HRS-seq to identify genomic regions linked to large ribonucleoprotein complexes.
  • Research using mouse embryonic stem cells reveals that these regions are primarily associated with highly expressed genes and regulatory sequences like super-enhancers.
  • The findings support the idea that these chromosomal regions contribute to the organization of active chromatin and are involved in transcription control through a process called phase separation.
View Article and Find Full Text PDF

The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis.

View Article and Find Full Text PDF

Background: In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place.

View Article and Find Full Text PDF

Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains' organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation.

View Article and Find Full Text PDF

The chromosome conformation capture (3C) technique is fundamental to many population-based methods investigating chromatin dynamics and organization in eukaryotes. Here, we provide a modified quantitative 3C (3C-qPCR) protocol for improved quantitative analyses of intra-chromosomal contacts. We also describe an algorithm for data normalization which allows more accurate comparisons between contact profiles.

View Article and Find Full Text PDF

The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level.

View Article and Find Full Text PDF

The junb gene behaves as an immediate early gene in bacterial lipopolysaccharide (LPS)-stimulated dendritic cells (DCs), where its transient transcriptional activation is necessary for the induction of inflammatory cytokines. junb is a short gene and its transcriptional activation by LPS depends on the binding of NF-κB to an enhancer located just downstream of its 3' UTR. Here, we have addressed the mechanisms underlying the transcriptional hyper-reactivity of junb.

View Article and Find Full Text PDF

The myogenic regulatory factor Myod and insulin-like growth factor 2 (Igf2) have been shown to interact in vitro during myogenic differentiation. In order to understand how they interact in vivo, we produced double-mutant mice lacking both the Myod and Igf2 genes. Surprisingly, these mice display neonatal lethality due to severe diaphragm atrophy.

View Article and Find Full Text PDF

It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome.

View Article and Find Full Text PDF

Epigenetic reprogramming, characterized by loss of cytosine methylation and histone modifications, occurs during mammalian development in primordial germ cells (PGCs), yet the targets and kinetics of this process are poorly characterized. Here we provide a map of cytosine methylation on a large portion of the genome in developing male and female PGCs isolated from mouse embryos. We show that DNA methylation erasure is global and affects genes of various biological functions.

View Article and Find Full Text PDF

Background: Despite its critical role for mammalian gene regulation, the basic structural landscape of chromatin in living cells remains largely unknown within chromosomal territories below the megabase scale.

Results: Here, using the 3C-qPCR method, we investigate contact frequencies at high resolution within interphase chromatin at several mouse loci. We find that, at several gene-rich loci, contact frequencies undergo a periodical modulation (every 90 to 100 kb) that affects chromatin dynamics over large genomic distances (a few hundred kilobases).

View Article and Find Full Text PDF

Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here, using the quantitative chromosome conformation capture assay, we show that, in the mouse liver, the endodermal enhancers have low contact frequencies with the Igf2 promoters but display, on the paternal chromosome, strong interactions with the intragenic differentially methylated regions 1 and 2.

View Article and Find Full Text PDF

DNA methylation is extensively reprogrammed during the early phases of mammalian development, yet genomic targets of this process are largely unknown. We optimized methylated DNA immunoprecipitation for low numbers of cells and profiled DNA methylation during early development of the mouse embryonic lineage in vivo. We observed a major epigenetic switch during implantation at the transition from the blastocyst to the postimplantation epiblast.

View Article and Find Full Text PDF

The INK4B-ARF-INK4A (INK/ARF) locus is composed of three tumor suppressor genes, which are kept silenced by DNA methylation in different cancer types. In addition, a non-coding RNA (ANRIL) is transcribed in the anti-sense orientation upstream of the ARF gene. The resulting divergent promoter region is bound by the chromatin insulator protein CTCF in association with histone H3 tri-methylated on lysine 4, irrespective of transcription of ANRIL and ARF.

View Article and Find Full Text PDF

DNA methylation occurs on cytosines, is catalyzed by DNA methyltransferases (DNMTs), and is present at high levels in all vertebrates. DNA methylation plays essential roles in maintaining genome integrity, but its implication in orchestrating gene-expression patterns remained a matter of debate for a long time. Recent efforts to map DNA methylation at the genome level helped to get a better picture of the distribution of this mark and revealed that DNA methylation is more dynamic between cell types than previously anticipated.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: