Publications by authors named "Thierry Duchene"

Starch-branching enzymes (BEs) are essential for starch synthesis in both plants and algae where they influence the architecture and physical properties of starch granules. Within Embryophytes, BEs are classified as type 1 and type 2 depending on their substrate preference. In this article, we report the characterization of the three BE isoforms encoded in the genome of the starch producing green algae : two type 2 BEs (BE2 and BE3) and a single type 1 BE (BE1).

View Article and Find Full Text PDF

Chlamydomonas reinhardtii represents an ideal model microbial system to decipher starch metabolism. In this green algae, in cells growing in photosynthetic conditions, starch mainly accumulates as a sheath surrounding the pyrenoid while in cells subjected to a nutrient starvation, numerous starch granules are filling up the plastid stroma. The mechanisms underlying and regulating this switch from photosynthetic to storage starch metabolisms are not known.

View Article and Find Full Text PDF

The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a special test to learn how a tiny green alga called Chlamydomonas reinhardtii moves starch around when it doesn't have nitrogen.
  • They looked at how different factors like lack of nutrients and changes from light to dark affect mutant strains of the alga.
  • About a third of these mutant strains had changes in important genes for breaking down starch, while the rest were missing unknown functions that could help the alga move starch differently.
View Article and Find Full Text PDF