Publications by authors named "Thierry Dintzer"

Nickel/yttria-stabilized zirconia (YSZ) composites are the most commonly used fuel electrodes for solid oxide cells. While microstructural changes of Ni/YSZ during operational conditions have been thoroughly investigated, there is limited knowledge regarding Ni/YSZ surface chemistry under working conditions. In this study, we examine the interaction between Ni/YSZ electrodes and water vapor under open circuit and polarization conditions, utilizing near ambient pressure soft and hard X-ray photoelectron spectroscopies.

View Article and Find Full Text PDF

2D materials are attracting increasing attention in many strategic applications. In particular, ultra-thin non-layered oxides have been shown to outperform their 3D counter-parts in several health and energy applications, such as the removal of toxic carbon monoxide by low temperature oxidation and the development of high performance supercapacitors. The general reason for that is the increased surface-to-volume ratio, which maximizes exposure of active species and enhances exchange between the (limited) bulk and the surface.

View Article and Find Full Text PDF

Understanding the surface chemistry of electrode materials under gas environments is important in order to control their performance during electrochemical and catalytic applications. This work compares the surface reactivity of Ni/YSZ and LaSrCrFeO, which are commonly used types of electrodes in solid oxide electrochemical devices. In situ synchrotron-based near-ambient pressure photoemission and absorption spectroscopy experiments, assisted by theoretical spectral simulations and combined with microscopy and electrochemical measurements, are used to monitor the effect of the gas atmosphere on the chemical state, the morphology, and the electrical conductivity of the electrodes.

View Article and Find Full Text PDF

Nickel/doped-ceria composites are promising electrocatalysts for solid-oxide fuel and electrolysis cells. Very often steam is present in the feedstock of the cells, frequently mixed with other gases, such as hydrogen or CO . An increase in the steam concentration in the feed mixture is considered accountable for the electrode oxidation and the deactivation of the device.

View Article and Find Full Text PDF

The understanding of the interactions between the different components of supported metal doped gold catalysts is of crucial importance for selecting and designing efficient gold catalysts for reactions such as CO oxidation. To progress in this direction, a unique supported nano gold catalyst Au/SS was prepared, and three doped samples (Au/SS@M) were elaborated. The samples before and after test were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS).

View Article and Find Full Text PDF

Commercially available polyurethane open cell foams are readily coated with mussel-inspired polydopamine. The polydopamine film allows robust immobilisation of TiO2 nanoparticles at the surface of the three-dimensional material. The resulting catalyst is efficient for the photo-degradation of an azo dye, reusable and highly resistant to mechanical stress.

View Article and Find Full Text PDF

The development of efficient energy conversion systems requires precise engineering of electrochemical interfaces and thus asks for techniques to probe the structure and the composition of the dynamic electrode/electrolyte interfacial region. This work demonstrates the potential of the near ambient pressure X-ray photoelectron spectroscopy (NAPXPS) for studies of processes occurring at the interface between a metal electrode and a liquid electrolyte. By using a model membrane-electrode assembly of a high temperature phosphoric acid-imbibed proton exchange membrane fuel cell, and combining NAPXPS measurements with the density functional theory, it was possible to monitor such fundamental processes as dissociation and migration of the phosphoric acid within a nanostructured Pt electrode under polarization.

View Article and Find Full Text PDF

Cascade Impactor is a powerful sampling method to collect airborne particles as a function of their size. The 3-stages Cascade Impactor used in this study allowed to sample simultaneously particles with aerodynamic diameter Dae>10 μm, 2.5 μm View Article and Find Full Text PDF

Ambient pressure photoelectron and absorption spectroscopies were applied under 0.2 mbar of O2 and H2 to establish an unequivocal correlation between the surface oxidation state of extended and nanosized PtCo alloys and the gas-phase environment. Fundamental differences in the electronic structure and reactivity of segregated cobalt oxides were associated with surface stabilization of metastable wurtzite-CoO.

View Article and Find Full Text PDF

The reduction and oxidation of carbon-supported cobalt nanoparticles (3.50±0.22 nm) and a Co (0001) single crystal was investigated by ambient pressure X-ray photoelectron (APPES) and X-ray absorption (XAS) spectroscopies, applied in situ under 0.

View Article and Find Full Text PDF

Two functional ethynyl-pyrene derivatives have been designed and synthesized by di- and tetra-substitutions of bromo pyrene derivatives with N-(4-ethynylphenyl)-3,4,5-tris(hexadecyloxy)benzamide fragments. The photoluminescence wavelength of the pyrene core can be tuned by the substitution pattern and the state of matter (solid, solution, gel, or liquid crystal). The disubstituted pyrene derivative 1 is not mesomorphic but produces robust and highly fluorescent gels in DMF, toluene, and cyclohexane.

View Article and Find Full Text PDF