Bladder cancer is a heterogeneous, complicated, and widespread illness with high rates of morbidity, death, and expense if not treated adequately. The accurate and exact stage of bladder cancer is fundamental for treatment choices and prognostic forecasts, as indicated by convincing evidence from randomized trials. The extraordinary capability of Deep Convolutional Neural Networks (DCNNs) to extract features is one of the primary advantages offered by these types of networks.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2021
In applications of domain adaptation, there may exist multiple source domains, which can provide more or less complementary knowledge for pattern classification in the target domain. In order to improve the classification accuracy, a decision-level combination method is proposed for the multisource domain adaptation based on evidential reasoning. The classification results obtained from different source domains usually have different reliabilities/weights, which are calculated according to domain consistency.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2019
Precise delineation of target tumor is a key factor to ensure the effectiveness of radiation therapy. While hybrid positron emission tomography-computed tomography (PET-CT) has become a standard imaging tool in the practice of radiation oncology, many existing automatic/semi-automatic methods still perform tumor segmentation on mono-modal images. In this paper, a co-clustering algorithm is proposed to concurrently segment 3D tumors in PET-CT images, considering that the two complementary imaging modalities can combine functional and anatomical information to improve segmentation performance.
View Article and Find Full Text PDFAs a vital task in cancer therapy, accurately predicting the treatment outcome is valuable for tailoring and adapting a treatment planning. To this end, multi-sources of information (radiomics, clinical characteristics, genomic expressions, etc) gathered before and during treatment are potentially profitable. In this paper, we propose such a prediction system primarily using radiomic features (e.
View Article and Find Full Text PDFPET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
December 2006
The transferable belief model (TBM) is a model to represent quantified uncertainties based on belief functions, unrelated to any underlying probability model. In this framework, two main approaches to pattern classification have been developed: the TBM model-based classifier, relying on the general Bayesian theorem (GBT), and the TBM case-based classifier, built on the concept of similarity of a pattern to be classified with training patterns. Until now, these two methods seemed unrelated, and their connection with standard classification methods was unclear.
View Article and Find Full Text PDFA new relational clustering method is introduced, based on the Dempster-Shafer theory of belief functions (or evidence theory). Given a matrix of dissimilarities between n objects, this method, referred to as evidential clustering (EVCLUS), assigns a basic belief assignment (or mass function) to each object in such a way that the degree of conflict between the masses given to any two objects reflects their dissimilarity. A notion of credal partition is introduced, which subsumes those of hard, fuzzy, and possibilistic partitions, allowing to gain deeper insight into the structure of the data.
View Article and Find Full Text PDFThe two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony.
View Article and Find Full Text PDF