Publications by authors named "Thierry Chardot"

Hemp seed oil bodies (HSOBs) are of growing interest in response to the demand of consumers for healthy and natural plant-based food formulations. In this study, we used minimal processing including aqueous extraction by grinding and centrifugation to obtain HSOBs. We determined the lipid composition of HSBOs, their microstructure, and the impact of the homogenization pressure, pH and minerals on their surface properties and the physical stability of the emulsions.

View Article and Find Full Text PDF

Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola () accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of expression.

View Article and Find Full Text PDF

Acyl-CoA:diacylglycerol acyltransferases 3 (DGAT3) are described as plant cytosolic enzymes synthesizing triacylglycerol. Their protein sequences exhibit a thioredoxin-like ferredoxin domain typical of a class of ferredoxins harboring a [2Fe-2S] cluster. The Arabidopsis thaliana DGAT3 (AtDGAT3; At1g48300) protein is detected in germinating seeds.

View Article and Find Full Text PDF

Background: Oleaginous yeast Yarrowia lipolytica is an organism of choice for the development of biofuel and oleochemicals. It has become a chassis for metabolic engineering in order to produce targeted lipids. Understanding the function of key-enzymes involved in lipid metabolism is essential to design better routes for enhanced lipid production and for strains producing lipids of interest.

View Article and Find Full Text PDF

Postgerminative mobilization of neutral lipids stored in seed lipid droplets (LDs) is preceded by the degradation of oleosins, the major structural LD proteins that stabilize LDs in dry seeds. We previously showed that oleosins are marked for degradation by ubiquitination and are extracted from LDs before proteolysis. However, the mechanisms underlying the dislocation of these LD-anchored proteins from the LD monolayer are yet unknown.

View Article and Find Full Text PDF

Unlabelled: Lipid droplets are the major stock of lipids in oleaginous plant seeds. Despite their economic importance for oil production and biotechnological issues (biofuels, lubricants and plasticizers), numerous questions about their formation, structure and regulation are still unresolved. To determine water accessible domains of protein coating at lipid droplets surface, a structural proteomic approach has been performed.

View Article and Find Full Text PDF

The membrane proteins acyl-CoA:diacylglycerol acyltransferases (DGAT) are essential actors for triglycerides (TG) biosynthesis in eukaryotic organisms. Microbial production of TG is of interest for producing biofuel and value-added novel oils. In the oleaginous yeast Yarrowia lipolytica, Dga1p enzyme from the DGAT2 family plays a major role in TG biosynthesis.

View Article and Find Full Text PDF

Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E.

View Article and Find Full Text PDF

Caleosin, a calcium-binding protein associated with plant lipid droplets, stimulates lipid accumulation when heterologously expressed in Saccharomyces cerevisiae. Accumulated lipids are stored in cytoplasmic lipid droplets that are stabilised by incorporated caleosin. We designed a set of mutants affecting putative crucial sites for caleosin function and association with lipid droplets, i.

View Article and Find Full Text PDF

Background: Yeasts belonging to the subphylum Saccharomycotina have been used for centuries in food processing and, more recently, biotechnology. Over the past few decades, these yeasts have also been studied in the interest of their potential to produce oil to replace fossil resources. Developing yeasts for massive oil production requires increasing yield and modifying the profiles of the fatty acids contained in the oil to satisfy specific technical requirements.

View Article and Find Full Text PDF

It has now been clearly shown that lipid droplets (LDs) play a dynamic role in the cell. This was reinforced by LD proteomics which suggest that a significant number of trafficking proteins are associated with this organelle. Using microscopy, we showed that LDs partly co-localize with the vacuole in S.

View Article and Find Full Text PDF

In oleaginous seeds, lipids--stored in organelles called oil bodies (OBs)--are degraded post-germinatively to provide carbon and energy for seedling growth. To date, little is known about how OB coat proteins, known as oleosins, control OB dynamics during seed germination. Here, we demonstrated that the sequential proteolysis of the five Arabidopsis thaliana oleosins OLE1-OLE5 begins just prior to lipid degradation.

View Article and Find Full Text PDF

The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded.

View Article and Find Full Text PDF

Diacylglycerol acyltransferases (DGATs) catalyze the final and only committed step of triacylglycerol synthesis. DGAT activity is rate limiting for triacylglycerol accumulation in mammals, plants and microbes. DGATs belong to three different evolutionary classes.

View Article and Find Full Text PDF

Oil bodies, lipid-storage organelles, are stabilized by a number of specific proteins. These proteins are very hydrophobic, which complicates their identification by "classical" proteomic protocols using trypsin digestion. Due to the lack of trypsin cleavage sites, the achievable protein coverage is limited or even insufficient for reliable protein identification.

View Article and Find Full Text PDF

In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins).

View Article and Find Full Text PDF

In cells, from bacteria to plants or mammals, lipids are stored in natural emulsions called oil bodies (OBs). This organelle is surrounded by a phospholipid monolayer which is thought to contain integral proteins involved in its stabilization. The insertion and fold of these proteins into the phospholipid monolayer are poorly understood.

View Article and Find Full Text PDF

Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes.

View Article and Find Full Text PDF

In this study, oil bodies (OBs) from Gevuina avellana (OBs-G) and Madia sativa (OBs-M) were isolated and characterized. Microscopic inspection revealed that the monolayer on OB-G was thinner compared to that on OB-M. Cytometric profiles regarding size, complexity, and staining for the two OB sources were similar.

View Article and Find Full Text PDF

Triacylglycerols (TAG) and steryl esters (SE) are the principal storage lipids in all eukaryotic cells. In yeasts, these storage lipids accumulate within special organelles known as lipid bodies (LB). In the lipid accumulation-oriented metabolism of the oleaginous yeast Yarrowia lipolytica, storage lipids are mostly found in the form of TAG, and only small amounts of SE accumulate.

View Article and Find Full Text PDF

Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs.

View Article and Find Full Text PDF

Plant seed oil bodies, subcellular lipoprotein inclusions providing storage reserves, are composed of a neutral lipid core surrounded by a phospholipid monolayer with several integrated proteins that play a significant role in stabilization of the particles and probably also in lipid mobilization. Oil bodies' proteins are generally very hydrophobic, due to the long uncharged sequences anchoring them into the lipid core, which makes them extremely difficult to handle and to digest successfully. Although oil bodies have been intensively studied during last decades, not all their proteins have been identified yet.

View Article and Find Full Text PDF

The seed oil of Jatropha curcas has been proposed as a source of biodiesel. In plants, seed oil is stored in subcellular organelles called oil bodies (OBs), which are stabilized by proteins. Proteome composition of the J.

View Article and Find Full Text PDF

Seed lipid bodies constitute natural emulsions stabilized by specialized integral membrane proteins, among which the most abundant are oleosins, followed by the calcium binding caleosin. These proteins exhibit a triblock structure, with a highly hydrophobic central region comprising up to 71 residues. Little is known on their three-dimensional structure.

View Article and Find Full Text PDF

Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function.

View Article and Find Full Text PDF