Predicting animal population trajectories into the future has become a central exercise in both applied and fundamental ecology. Because demographic models classically assume population closure, they tend to provide inaccurate predictions when applied locally to interconnected subpopulations that are part of a larger metapopulation. Ideally, one should explicitly model dispersal among subpopulations, but in practice this is prevented by the difficulty of estimating dispersal rates in the wild.
View Article and Find Full Text PDFWhile wind power plants are an important contribution to the production of renewable energy to limit climate change, collision mortality from turbines is a danger for birds, including many protected species. To try to mitigate collision risks, automatic detection systems (ADSs) can be deployed on wind power plants; these work by detecting incoming birds using a detection/classification process and triggering a specific reaction (scaring off the bird or shutting down the turbine). Nonetheless, bird fatalities still occur at ADS-equipped wind power plants, which raises the question of the performance of these tools.
View Article and Find Full Text PDFQuantifying the demographic impact of anthropogenic fatalities on animal populations is a key component of wildlife conservation. However, such quantification remains rare in environmental impact assessments (EIA) of large-infrastructure projects, partly because of the complexity of implementing demographic models. Providing user-friendly demographic tools is thus an important step to fill this gap.
View Article and Find Full Text PDFTwo approaches have been classically used in disease ecology to estimate epidemiological parameters from field studies: cross-sectional sampling from unmarked individuals and longitudinal capture-recapture setups, which generally involve more limited numbers of marked individuals due to cost and logistical constraints. Although the benefits of longitudinal setups are increasingly acknowledged in the disease ecology community, cross-sectional data remain largely overrepresented in the literature, probably because of the inherent costs of longitudinal surveys. In this context, we used simulated data to compare the performances of cross-sectional and longitudinal designs to estimate the force of infection (i.
View Article and Find Full Text PDFRapid environmental change in highly biodiverse tropical regions demands efficient biomonitoring programmes. While existing metrics of species diversity and community composition rely on encounter-based survey data, eDNA recently emerged as alternative approach. Costs and ecological value of eDNA-based methods have rarely been evaluated in tropical regions, where high species richness is accompanied by high functional diversity (e.
View Article and Find Full Text PDFAs large carnivores recover throughout Europe, their distribution needs to be studied to determine their conservation status and assess the potential for human-carnivore conflicts. However, efficient monitoring of many large carnivore species is challenging due to their rarity, elusive behavior, and large home ranges. Their monitoring can include opportunistic sightings from citizens in addition to designed surveys.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density.
View Article and Find Full Text PDFSpatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases.
View Article and Find Full Text PDFSince amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a "smoking gun" was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales.
View Article and Find Full Text PDFMany animal life cycles involve movements among different habitats to fulfill varying resource demands. There are inherent costs associated with such movements, and the decision to leave or stay at a given location ought to be motivated by the benefits associated with potential target habitats. Because movement patterns, especially those associated with reproduction, can have important implications for the success (survival, reproduction) of individual animals, and therefore a population's dynamics, it is important to identify and understand their sources of variation (environmental and individual).
View Article and Find Full Text PDFThe occurrence of false positive detections in presence-absence data, even when they occur infrequently, can lead to severe bias when estimating species occupancy patterns. Building upon previous efforts to account for this source of observational error, we established a general framework to model false positives in occupancy studies and extend existing modeling approaches to encompass a broader range of sampling designs. Specifically, we identified three common sampling designs that are likely to cover most scenarios encountered by researchers.
View Article and Find Full Text PDFThe investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark-recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity.
View Article and Find Full Text PDFAlthough the quantification of individual heterogeneity in wild populations' vital rates has recently attracted growing interest among ecologists, the investigation of its evolutionary consequences remains limited, mainly because of the difficulties in assessing fitness and heritability from field studies on free-ranging animals. In the presence of individual variability, evaluation of fitness consequences can notably be complicated by the existence of trade-offs among different vital rates. In this study, to further assess the evolutionary significance of previously quantified levels of individual heterogeneity in female Weddell seal (Leptonychotes weddellii Lesson) reproductive rates (Chambert et al.
View Article and Find Full Text PDFClassifying the states of an individual and quantifying transitions between states are crucial while modeling animal behavior, movement, and physiologic status. When these states are hidden or imperfectly known, it is particularly convenient to relate them to appropriate quantitative measurements taken on the individual. This task is, however, challenging when quantitative measurements are not available at each sampling occasion.
View Article and Find Full Text PDFIndividual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated.
View Article and Find Full Text PDFExtreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected.
View Article and Find Full Text PDF1. Despite a growing interest in wildlife disease ecology, there is a surprising lack of knowledge about the exposure dynamics of individual animals to naturally circulating infectious agents and the impact of such agents on host life-history traits. 2.
View Article and Find Full Text PDF1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies.
View Article and Find Full Text PDF